
BricsCAD
Customizing

Copyright Information

Copyright © 2019 by upFront.eZine Publishing, Ltd.
All rights reserved worldwide.

This book is covered by copyright. As the owner of the copyright, upFront.eZine Publishing, Ltd. gives you permission to make
one print copy. You may not make any electronic copies, and you may not claim authorship or ownership of the text or figures
herein.

Visit the Customizing BricsCAD Web site at http://www.worldcadaccess.com/ebooksonline/2015/04/cb15.html. At this Web page,
you will find editions of this book for BricsCAD V8 through to V17.

This twelfth edition is based on BricsCAD V19
10 January 2019

Technical Writer Ralph Grabowski
Technical Editing Bricsys Staff

All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the property
of others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to
distinguish their products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and any
disks or programs that may accompany it, including but not limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither the publisher, authors, staff, or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have been caused
directly or indirectly by this book.

Summary of Contents

Full Table of Contents . v

Part I — Customizing the BricsCAD Environment
1 . Introduction to How to Customize BricsCAD . 3
2 . Adjusting BricsCAD’s Settings . 19
3 . Changing BricsCAD’s Environment . 29
4 . Adapting the User Interface To You . 51

Part II — Working with the Customize Dialog Box
5 . Introduction to the Customize Dialog Box . 71
6 . Customizing the Menu Bar and Context Menus . 89

7 . Customizing Toolbars and Button Icons . 109
8 . Writing Macros and Diesel Code . 131
9 . Customizing Ribbon Tabs and Panels . 159
10 . Customizing Keystroke Shortcuts, Aliases, and Shell Commands 183
11 . Customizing Mouse, Double-click, and Tablet Buttons 201
12 . Customizing the Quad . 221
13 . Customizing Rollover Properties . 239
14 . Customizing Multiple UIs with Workspaces . 247

Part III — Other Customizations in BricsCAD
15 . Designing Tool & Structure Panels . 263
16 . Creating Simple and Complex Linetypes . 295
17 . Patterning Hatches . 307
18 . Decoding Shapes and Fonts . 319
19 . Coding with Field Text . 333

Part IV — Programming BricsCAD 359
20 . Writing Scripts . 361
21 . Programming with LISP . 369
22 . Designing Dialog Boxes with DCL . 401
23 . Dabbling in VBA . 433

Part V — Appendices .465
A . Command Summary . 467
B . System Variables and Settings . 493
C . Concise DCL Reference . 517
D . Concise LISP Reference . 561

Full Table of Contents

Part I — Customizing the BricsCAD Environment

1 . Introduction to How to Customize BricsCAD 3
The Many Ways to Customizing . 4

Which Customization Do You Use? . 5
Versions of BricsCAD . 6

61 Tips for BricsCAD Users . 7
For Further Reference . 18

Reference and Tutorial Books . 18
BricsCAD API References . 18
DWG, DXF, and DWF References . 18

2 . Adjusting BricsCAD’s Settings 19
Touring the Settings Dialog Box . 20

Settings Dialog Box: Toolbar . 21
Categorized/Alphabetic Sorting . 21
Show Differences . 22
Dialog Configuration . 22
Finding Variables . 23
Export Settings . 24
Exporting Variables . 25

Accessing Variables and Changing Values . 27
Variables Specific to Windows . 27

Changing Variables at the Command Prompt . 28

vi Customizing BricsCAD V19

3 . Changing BricsCAD’s Environment 29
Starting BricsCAD . 30

Command Line Options . 30
Catalog of Command-Line Switches . 33

No Switch - Load Drawings . 33
B Switch - Script Files . 33
L Switch - No Logo . 34
LD Switch - Application Load . 34
S Switch - Search Support Paths . 34
P Switch - User Profiles . 34
PL Switch - Batch Plotting . 35
T Switch - Template Files . 35
Regserver and Unregserver Switches . 35

Changing the Colors of the User Interface . 36
Background Color . 36
Changing Cursor Color and Size . 37

DISPLAY SETTINGS . 38
Snap Marker Options . 40
Hyperlink Cursor Options . 41

SETTINGS AT THE COMMAND LINE . 41
Dynamic Dimension Options . 42

Support File Paths . 43
Summary of Files Settings . 45

Files (and Paths) . 45
Project Paths . 46
Printer Support Paths and Files . 46
Templates Paths and Files . 47
Tool Palettes Path . 47
Dictionaries Section . 47
Log Files Paths and Files . 47
File Dialogs . 47
Places Bar (Windows only) . 48

Reusing User Preferences . 48
Launching the User Profile Manager . 49

Using the Profile Manager . 50

 Table of Contents vii

4 . Adapting the User Interface To You 51
Customizing the Command Line . 52

Resizing and Hiding the Command Line . 52
Related System Variables . 53

Additional Command Line Variables . 55
Even More Command Line Variables . 58

Customizing the Ribbon . 59
Handling the Ribbon . 59

Related System Variables . 60
Customizing Drawing Tabs . 61

Related System Variables . 62
Customizing the Look From Control . 62

LookFrom Command . 64
Related System Variables . 64

Maximizing the Drawing Area . 66
Using Multiple Monitors . 67

Customizing Other UI Elements . 68

Part II — Working with the Customize Dialog Box

5 . Introduction to the Customize Dialog Box 71
Touring the Customize Dialog Box . 73

ABOUT CUI FILES . 74
Customize’s Menu Bar . 75

ABOUT MAIN AND PARTIAL CUSTOMIZATION . 75
CUI Customization Files . 76

Search For Commands . 78
Tabs of the Customize Dialog Box . 79
Shortcut Menus . 79
Apply and OK Buttons . 80
Viewing Changes Made to Customize . 81

Additional Management Options . 82
Using Partial Menus to Customize BricsCAD Correctly 83

Setting Up a New Partial Menu . 83
Sharing Customizations . 85
Removing Partial CUI Files . 87

viii Customizing BricsCAD V19

6 . Customizing the Menu Bar and Context Menus . . .89
Modifying the Menu Bar . 90

QUICK SUMMARY OF MENU COMMANDS & VARIABLES . 90
Touring the Menu Tab . 91
QUICK SUMMARY OF MENU PARAMETERS . 92
Opening and Closing Nodes . 93
Gray Dots and Separator Lines . 93

Understanding Menu Title Conventions . 94
Keyboard Shortcut - & . 94
Dialog Box - . . . 95
Menu Titles . 95

Commands Use Macros . 95
Cancel - ^c . 95
Transparent - ' . 95
Internationalize - _ . 96
Enter - ; . 96
Pause - \ . 96

Editing the Help String . 97
Tutorial: Adding Menu Items . 97

Tutorial: Deleting Menu Items . 100
Tutorial: Adding Tools to Menus . 100
Context Menus . 102

Tutorial: Customizing Context Menus . 103
Tutorial: Sharing Menus . 108

Importing AutoCAD Menus . 108

7 . Customizing Toolbars and Button Icons 109
QUICK SUMMARY OF TOOLBAR COMMANDS & VARIABLES 110

Customizing the Look of Toolbars . 110
Rearranging Toolbars . 110

Tutorial: Dragging and Moving Toolbars . 111
QUICK SUMMARY OF TOOLBAR PARAMETERS . 112
Tutorial: Turning Toolbars On and Off . 113

Making New Toolbars, and Modifying Them . 114
Tutorial: How to Create A New Toolbar . 114

Tutorial: Alternative Method . 117
Adding Controls, Flyouts, and Separators . 119

About Controls (Droplists) . 119
Tutorial: Adding Controls (Droplists) to Toolbars . 120

 Table of Contents ix

Customizing Controls (Droplists) . 120
About Flyouts . 121

Tutorial: Adding Flyouts to Toolbars . 121
About Separators . 123

Tutorial: Adding Separators to Toolbars . 123
Removing Buttons, Renaming and Deleting Toolbars 124

Tutorial: Removing Buttons and Toolbars . 124
Tutorial: Renaming Toolbars and Buttons . 125
SIZING BUTTONS . 126

Customizing Buttons . 126
Modifying Button Parameters . 127

Tutorial: Editing the Title Name and the Help String 127
Tutorial: Changing the Command Macro . 127
Tutorial: Replacing Button Images . 128

8 . Writing Macros and Diesel Code 131
QUICK SUMMARY OF METACHARACTERS IN MACROS . 132

Simple Macros . 133
QUICK SUMMARY OF DIESEL FUNCTIONS . 134

Transparent Commands in Macros . 135
Dashed Commands . 135

Options & User Input . 135
Options . 135
Pausing for User Input . 136
Combining Options and Pauses . 136
Other Control Keys . 137

Menu-Specific Metacharacters . 138
Diesel Coding . 138

About Diesel . 138
How to Toggle Check marks . 139

Toggling Grayouts . 140
Reporting Values of System Variables . 141
Applying Variables Everywhere . 143

How to Add Units . 143
How to Solve Check Marks that Conflict with Icons . 144
How to Deal with Two Sysvars . 144
Reporting Through Diesel . 145
Formatting Units . 145

Formatting Diesel Output . 146

x Customizing BricsCAD V19

Formatting Numbers . 146
Fix . 146
Index . 146
Nth . 146
Rtos . 147
Formatting Angles . 147

Formatting Text . 148
Upper . 148
StrnLen . 148

Variables in Diesel . 148
Complete Catalog of Diesel Functions . 149

Math Functions . 149
Logic Functions . 150
Conversion Function . 152
String Functions . 152
System Functions . 154
Diesel Programming Tips . 156

Debugging Diesel . 156
ModeMacro: Displaying Text on the Status Bar . 156

9 . Customizing Ribbon Tabs and Panels 159
QUICK SUMMARY OF RIBBON COMMANDS AND VARIABLES 160

The Structure of Ribbons . 161
Tutorial: How to Add Panels to Ribbon Tabs . 162

Moving Panels . 164
Copying Panels . 165
Removing Panels . 165

Tutorial: Making New Tabs . 165
Tutorial: How to Force New Tabs to Display . 166
Adding Panels to Ribbon Tabs . 169
Moving Tabs Along the Ribbon . 169
Copying Tabs . 169
Hiding Tabs in a Workspace . 169

Customizing Ribbon Panels . 169
Panel Design Tips . 170
Tutorial: Populating a new Panel . 171
Catalog of Panel Elements . 174

Append Ribbon Panel / Insert Ribbon Panel . 175

 Table of Contents xi

Delete . 175
Add Launcher . 176
Append Row / Insert Ribbon Row / Insert Row Panel 176
Append Break / Insert Ribbon Break / Append Separator 177
Append Split Button . 178
Append Toggle Button . 181

10 . Customizing Keystroke Shortcuts, Aliases,
 and Shell Commands .183

QUICK SUMMARY OF SHORTCUT KEYSTROKES . 184
Tutorial: Defining Shortcut Keys . 187
Tutorial: Editing & Deleting Keyboard Shortcuts . 190

Tutorial: Assigning Multiple Commands . 190
Customizing Command Aliases . 191

Tutorial: Customizing Aliases . 192
Tutorial: Creating New Aliases . 192

Tutorial: Editing & Deleting Aliases . 193
BRICSCAD ALIASES SORTED BY COMMAND NAME . 194

Rules for Writing Aliases . 197
Tutorial: Hand-Coding Aliases . 197

Customizing Shell Commands . 198
Tutorial: Editing Shell Commands . 200

11 . Customizing Mouse, Double-click, and Tablet
 Buttons .201

About Mice and Their Buttons . 203
QUICK SUMMARY OF DEFAULT BUTTONS . 204
About the Pick Button . 205
About the Right Button . 205
About the Middle Button . 206
Troubleshooting . 206

Other Input Devices . 207
Digitizing Tablets . 207
3D Mice . 207
Touch Pads . 209

Defining Actions for Mouse Buttons . 210
Tutorial: Button Assignment . 210

xii Customizing BricsCAD V19

Tutorial: Assigning Shortcut Menus to Buttons . 212
Tutorial: Writing Macros for Buttons . 213

Customizing Double-click Actions . 213
Changing a Double-click Action . 214
Making a New Double-click Action . 215

Defining Actions for Tablet Buttons . 217

12 . Customizing the Quad .221
QUICK SUMMARY OF QUAD VARIABLES . 222

About The Quad . 223
Step 1: Move Cursor Onto an Entity . 223

Step 2: Expand the Quad . 224
Step 3: Move Into Groupings . 224

Tutorial: Drawing with Quad . 225
Tutorial: Dimensioning with Quad . 225

Modifying the Quad’s Behavior . 226
Customizing the Quad . 227

Tutorial: Customizing Quad Buttons . 228
Customizing Quad Tabs . 229

Where’s My New Tab? . 231
Tutorial: Turning On Quad Groups (Tabs) . 231
Toggling Quad Tabs . 233

About Quad ENtity Filters . 234
Tutorial: Changing Entity Filters . 234
How the Quad Works. Or, How Does It Know What Entity Is There? 237

13 . Customizing Rollover Properties 239
QUICK SUMMARY OF ROLLOVER PROPERTY SETTINGS . 240
QUICK SUMMARY OF ROLLOVER PROPERTIES . 242

Customizing Rollover Properties . 243
Tutorial: How to Change Properties Displayed by Rollovers 243

14 . Customizing Multiple UIs with Workspaces 247
Workspace Customization Elements . 249

Adding and Removing Workspaces . 249
Removing Workspaces . 249
About Insert Separator . 252

 Table of Contents xiii

Toggling the Display of UI Elements . 252
Workspace Property Toggles . 252
Show Menus . 254

Toggling Visibility of UI Elements . 254
Toggling Menus . 254
Toggling Toolbars . 255
Toggling Panels . 255
Toggling Ribbons . 255
Toggle the Quad . 255

Fine-Tuning UI Elements . 256
Workspace Properties for Menus . 256
Properties of Toolbars . 257
Properties of Panels . 258
Proprieties of Ribbon Tabs . 260
Properties of Quad Items . 260

Part III — Other Customizations in BricsCAD

15 . Designing Tool & Structure Panels 263
About the Tool Palettes Panel . 265

QUICK SUMMARY OF VIEW OPTIONS . 266

Navigating Tools Palettes . 267
Icon Customization . 268
Palette Customization . 269

Customizing Tools . 270
Customizing Tools Properties . 271
Adding Programs and Macros to Tools . 274

Organizing Tools with Groups . 275
Creating Palette Groups . 276
Importing Tool Palettes from AutoCAD . 278

Sharing Tool Palette Groups by Exporting Them . 278
Alternative Sharing Method . 279

Customizing the Structure Panel . 280
Structure Configurations . 281

Customizing the Structure Panel . 281
STRUCTURE OF .CST FILES . 282
Group/Sort Tab . 283
Examining Rules . 284

xiv Customizing BricsCAD V19

Constructing Rules . 286
Show/Skip Tab . 292
Options Tab . 292

16 . Creating Simple and Complex Linetypes 295
QUICK SUMMARY OF LINETYPE DEFINITIONS . 296

About Simple and Complex Linetypes . 297
Commands Affecting Linetypes . 297

Loading Linetypes . 298
Scaling Linetypes . 298

System Variables Affecting Linetypes . 299
The Special Case of Paper Space . 300
The Special Case of Polylines . 300

Customizing Linetypes . 301
At the Command Prompt . 301

Testing the New Linetype . 302
Creating Linetypes with Text Editors . 303

Linetype Format (.lin) . 304
Line 1: Header . 304
Line 2: Data . 304
Complex (2D) Linetypes . 304
Embedding Text in Linetypes . 305

Text . 305
Text Style . 305
Text Scale . 305
Text Rotation . 306
Absolute . 306
X and Y Offset . 306

17 . Patterning Hatches .307
QUICK SUMMARY OF PATTERN DEFINITIONS . 308

Where Do Hatch Patterns Come From? . 309
How Hatch Patterns Work . 310

System Variables that Control Hatches . 311
Creating Custom Hatch Patterns . 311

-Hatch Command . 312
Hatch Command . 313

 Table of Contents xv

Understanding the .pat Format . 314
Comment and Header Lines . 314

Comment . 314
Start of Definition . 314
Pattern Name . 314
Description . 315

The Hatch Data . 315
Angle . 315
xOrigin and yOrigin . 315
xOffset and yOffset . 315
Dash1, 316

Adding Samples to the Hatch Palette . 316
Tips on Creating Pattern Codes . 316

18 . Decoding Shapes and Fonts 319
QUICK SUMMARY OF SHAPE DEFINITIONS . 320

Fonts, Complex Linetypes, and Shapes . 321
SHX Fonts . 321

About Fonts in BricsCAD . 322
Using SHX in Complex Linetypes . 322
SHX in Shapes . 322
SHX in GD&T . 323
Shape Compatibility with AutoCAD . 323

About Shape Files . 323
The Shape File Format . 324
Header Fields . 325

Definition Start . 325
shapeNumber . 325
totalBytes . 325
shapeName . 325

Definition Lines . 325
bytes . 325

Vector Codes . 326
Hexadecimal Conversion . 326

Instruction Codes . 327
End of Shape - 0/000 . 327
Draw Mode - 1/001 . 328
2/002: Move Mode - . 328
Reduced Scale - 3/003 . 328

xvi Customizing BricsCAD V19

Enlarged Scale - 4/004 . 328
Save (Push) - 5/005 . 328
Recall (Pop) - 6/006 . 328
Subshape - 7/007 . 329
X,y Distance - 8/008 . 329
X,y Distances - 9/009 . 329
Octant Arc - 10/00A . 329
Fractional Arc - 11/ 00B . 330
Bulge Arc - 12/00C . 330
Polyarc - 13/00D . 331
Flag Vertical Text Flag - 14/00E . 331

19 . Coding with Field Text .333
Placing Field Text . 334

Field Command . 334
Fields in MText . 337
Fields in Attributes . 338

Changing Field Text . 341
Double-clicking Fields in MText . 341
Editing Fields in Attribute Definitions . 342

Controlling the Way Fields Update . 342
UpdateField Command . 342
FieldEval Command . 343
FieldDisplay Command . 344

Another Field Text Example . 344
Updating the Field Text . 345

Understanding Field Codes . 346
Complete Field Code Reference . 347

Groups . 347
Metawords . 347
Formatting . 347

COMPATIBILITY WITH AUTOCAD FIELD CODES . 347
Complete Format Code Reference . 348

%tcn — Text Case . 348
%lun — Linear Units . 348
%dsn — Decimal Separator . 348
%aun — Angular Units . 349
%lwn — Line Weight units . 349
%qfn — scale Factor . 349

 Table of Contents xvii

%ctn — ConverT . 349
%ptn — PointTs (xyz coordinates) . 349
% .n — decimal places . 350
%prn — display PRecision . 350

%fnn — File Names . 350
%byn — BYtes (file size) . 350
href - Hyperlinks . 351
Date & Time Format Codes . 351

QUICK SUMMARY OF FIELD DATE AND TIME CODES . 352

Objects and Property Names . 353
Properties in Common . 353
Object Properties . 353

Arcs . 353
Attribute Definition . 354
Associative Dimensions . 354
Blocks, Block Placeholders, and External References 354
Circles . 354
Ellipses . 354
Hatches . 355
Leaders . 355
Lines . 355
Mtext . 355
OLE (object linking and embedding) objects . 355
Polylines . 355
Polygon Meshes . 356
Polyface Meshes . 356
Raster Images . 356
Regions . 356
Rays and Xlines . 356
Shapes . 356
Single-line Text . 356
Splines . 357
Tables . 357
Tolerances . 357
Viewports . 357
3D Faces . 357
3D Polylines . 357
3D Solids . 357
Sheet SetS . 358

Named Object Properties . 358

xviii Customizing BricsCAD V19

Part IV — Programming BricsCAD

20 . Writing Scripts .361
What are Scripts? . 362

Drawbacks to Scripts . 363
Strictly Command-Line Oriented . 363

Recording with RecScript . 364
Writing Scripts by Hand . 365
Script Commands and Modifiers . 366

Script . 366
RScript . 366
Resume . 367
Delay . 367
Special Characters . 367

Enter - (space) . 367
Comment - ; . 368
Transparent - ' . 368
Pause - Backspace . 368
Stop - esc . 368

21 . Programming with LISP 369
The History of LISP in BricsCAD . 370

BLADE Environment . 370
Compatibility between LISP and AutoLISP . 371

Additional LISP Functions . 371
Different LISP Functions . 371
Missing AutoLISP Functions . 372

The LISP Programming Language . 372
Simple LISP: Adding Two Numbers . 372
LISP in Commands . 374
Remembering the Result: setq . 374

LISP Function Overview . 375
Math Functions . 375
Geometric Functions . 376

Distance Between Two Points . 376
The Angle from 0 Degrees . 376
The Intersection of Two Lines . 377
Entity Snaps . 377

 Table of Contents xix

Conditional Functions . 377
Other Conditionals . 378

String and Conversion Functions . 378
Joining Strings of Text . 378
Converting Between Text and Numbers . 378
Other Conversion Functions . 379

External Command Functions . 379
Command Function Limitation . 381
Accessing System Variables . 381

GetXXX Functions . 381
Selection Set Functions . 383
Entity Manipulation Functions . 383
Advanced LISP Functions . 383

Writing a Simple LISP Program . 384
Why Write a Program? . 384

The Id Command . 384
The Plan of Attack . 384

Obtaining the Coordinates . 384
Placing the Text . 386
Putting It Together . 387

Adding to the Simple LISP Program . 387
Conquering Feature Bloat . 388

Wishlist Item #1: Naming the Program . 388
Defining the Function - defun . 388
Naming the Function - C: . 388
Local and Global Variables - / . 389
Wishlist Item #2: Saving the Program . 389
Wishlist Item #3: Automatically Loading the Program 389
Wishlist #4: Using Car and Cdr . 390

Saving Data to Files . 393
The Three Steps . 393

Step 1: Open the File . 393
Step 2: Write Data to the File . 394
Step 3: Close the File . 395

Putting It Together . 395
Wishlist #5: Layers . 396
Wishlist #6: Text Style . 396

Tips in Using LISP . 396
Tip #1. Use an ASCII Text Editor. . 396
Tip #2: Loading LSP Code into BricsCAD . 397
Tip #3: Toggling System Variables . 397

xx Customizing BricsCAD V19

Tip #4: Be Neat and Tidy. . 397
Tip #5: UPPER vs. lowercase . 398
Tip # 6: Quotation Marks as Quotation Marks . 398
Tip #7: Tabs and Quotation Marks . 399

22 . Designing Dialog Boxes with DCL 401
A QUICK HISTORY OF DCL . 402

What Dialog Boxes Are Made Of . 404
How DCL Operates . 404

Your First DCL File . 404
DCL Programming Structure . 405

Start Dialog Box Definition . 405
QUICK SUMMARY OF DCL METACHARACTERS . 406
Dialog Box Title . 406
OK Button . 406
The Default Tile . 407

Testing DCL Code . 407
LISP CODE TO LOAD AND RUN DIALOG BOXES . 408

Displaying Data from System Variables . 410
Adding the Complimentary LISP Code . 412
Clustering Text . 412

Supplying the Variable Text . 413
Leaving Room for Variable Text . 414

Fixing the Button Width . 415
Centering the Button . 415

Testing the Dialog Box . 416
Defining the Command . 416

Examples of DCL Tiles . 418
Buttons . 418

Making Buttons Work . 419
Check Boxes . 421
Radio Buttons . 423

Clusters . 426
Columns and Rows . 427
Boxed Row . 428
Boxed Row with Label . 428
Special Tiles for Radio Buttons . 429

Debugging DCL . 429
Dcl_Settings . 429

 Table of Contents xxi

DCL Error Messages . 429
Semantic error(s) is DCL file . 429
Dialog has neither an OK nor a CANCEL button . 430
Error in dialog file "filename.dcl", line n . 430
Dialog too large to fit on screen . 430

Additional Resources . 431

23 . Dabbling in VBA .433
QUICK SUMMARY OF VBA PROGRAM COMPONENTS . 434
QUICK SUMMARY OF VBA COMMANDS IN BRICSCAD . 434

Introduction to VBA . 435
Accessing VBA Programs . 435

Sending Commands . 435
EMBEDDED OR EXTERNAL . 436

Writing and Running VBA Routines . 437
Displaying Messages . 439

Constructing Dialog Boxes . 440
BricsCAD V19 Automation Object Model . 442

Object-Oriented Programming . 443
Common Object Model . 443
Object Browser . 443
Line Entity . 444

Properties . 445
Methods . 445
Events . 446

Dialog Box with Code . 446
Designing the Dialog Box . 447
Adding the Code . 452

Clicking Cancel . 452
QUICK SUMMARY OF VBA DATA TYPES . 453

LastInput .Dvb . 454
QUICK SUMMARY OF VBA STRING MANIPULATION . 454
QUICK SUMMARY OF VBA DATA TYPE RETURN VALUES . 456

Conversion Routines . 457
PointToString Conversion Function . 457

QUICK SUMMARY OF VBA PREDEFINED CONSTANTS . 457
Private Function PointToString(vIn As Variant) As String 458
Dim sPt As String: sPt = vbNullString . 458
Dim iPrecision As Integer . 458

xxii Customizing BricsCAD V19

iPrecision = ThisDrawing.GetVariable("LUPREC") . 459
If VarType(vIn) > vbArray Then . 459
sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", " 459
sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", " 460
sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision) 460
End If . 460
PointToString = sPt . 460
End Function . 460

StringToPoint Conversion Function . 461
Dim sCoords() As String: sCoords = Strings.Split(sIn, ",") 461
If UBound(sCoords) = 0 Then . 461
tmpPt(0) = Val(sCoords(0)) . 461

Loading and Running LastInput .Dvb . 462
QUICK SUMMARY OF VBA VARIABLE DECLARATIONS . 463

 Table of Contents xxiii

Part V — Appendices

A . Command Summary .467

B . System Variables and Settings 493

C . Concise DCL Reference .517
LISP Functions for Dialog Boxes . 551

D . Concise LISP Reference .561

xxiv Customizing BricsCAD V19

Notes

Customizing the
BricsCAD Environment

PART I

Notes

If you are a messy sketcher like me, then you appreciate how computer software makes
your work neater. For some drafters, that’s what BricsCAD amounts to: a neater drafting machine.

The real power behind CAD (computer-aided design), however, is its ability to be customized to
the way you work. Customize is jargon for letting CAD do some of the drafting for you. This ranges
from employing line patterns that are specific to your discipline to generating 3D staircases to fit
between two floors — and more.

The benefit? You get your work done in less time, or, if you are a free-lancer, you get more work
done in the same time.

The drawback? Customizing takes a bit of time:

•	 You	need	time	to	learn	how to	customize	BricsCAD	—	that’s	what	this	tutorial	book	is	all	about	

•	 Then	you	need	more	time	to	create the	customization

Time isn’t something most professionals have a lot of. I sometimes find myself doing repetitive
editing under the false belief that it would take longer to write (and debug) a macro for automating
the task than doing it by hand repetitively. So, I have this rule-of-thumb:

Write a macro (automation) when the same action is repeated more than three times.

There lies the responsibility of programmers to make automation easier for the end-user. Still, the
time you invest in automation makes you a more productive BricsCAD user, even in the short run.

Introduction to
How to Customize

BricsCAD

CHAPTER 1

4 Customizing BricsCAD V19

The information in this reference applies equally to BricsCAD running on Linux, MacOS, and Win-
dows. When there are differences from Windows, the Linux and MacOS portions are indicated by
gray colored text.

The Many Ways to Customizing

By my count, there are more than two dozen ways by which to customize BricsCAD. Some of these
methods depend on the edition of BricsCAD installed on your computer: the Pro and Platinum edi-
tions provide more options than does the Classic edition.

Here I list the customization tasks supported by BricsCAD in alphabetical order, along with related
three-letter file extensions. Those covered by this book are highlighted in blue:

BRX/TX BricsCAD and Teigha runtime extensions, similar to AutoCAD’s ARX
 Customizing the environment through command-line switches and other settings Chapter 3
CUI User interface elements like ribbon, LookFrom widget, and drawing tabs Chapter 4
DCL Dialog Control Language for customizable dialog boxes Chapter 22
DWG DraWinG for storing drawings and creating custom symbols — see Inside BricsCAD
DXF Drawing Interchange Format
 Field text Chapter 19
FMP Font Mapping Chapters 2 and 18
PGP Aliases and shell commands Chapter 10
CUI Customizable keystrokes, buttons, menus, toolbars, and ribbon Chapters 5 - 14
LIN Customizable simple and complex linetypes Chapter 16
LSP List processing language, similar to AutoLISP Chapter 21
OLE Object linking and embedding (not available in Linux or MacOS)
PAT Hatch patterns Chapter 17
 Quad cursor Chapter 12
 Rollover tooltips Chapter 13
SCR Script files Chapter 20
SDS Solutions Development System, similar to AutoCAD’s ADS (SDS and ADS are deprecated*)
SHP,SHX Shapes and customizable text fonts** Chapter 18
SLD Slides
TIP Tip of the day ***
 Variables, Settings dialog box, and SetVar command Chapter 2
VBA Visual Basic for Applications Chapter 23

* Deprecated is a programmer’s term that means, yes, SDS is still in BricsCAD, but it is so old that Bricsys recommends you use BRX instead .

** BricsCAD cannot compile .shp files into .shx . Sorry!

** Tip of the Day was removed from BricsCAD V15 . Sorry, sorry!

Some methods of customization are designed for end-users, such as modifying toolbar macros,
menus, and LISP routines, all of which you learn about in this tutorial book. Others are meant for
professional programmers, such as BRX/TX and VBA.

Between the two levels, there are many other customization possibilities. For instance, the coding
for hatch patterns is hard to figure out, but some enthusiastic users enjoy tinkering with them. You
learn about all these, as well.

 1 Introduction to Customizing BricsCAD 5

WHICH CUSTOMIZATION DO YOU USE?
That said, you need to make some decisions along the way. As you draft with BricsCAD, make a
mental or written record of your work. In particular, chronicle repetitive drafting tasks, because
these are the prime candidates for customization. As a pioneer in the CAD world emphasized, “You
should never have to draw the same line twice.” (In practice, we do, of course.)

Next, decide which of BricsCAD’s customization possibilities apply to the repetitive tasks you
uncovered. Some solutions are obvious, such as writing .lin files for custom line patterns. Others
are less obvious: to draw that 3D staircase, should you use a script file? (Perhaps.) A LISP routine?
(Yes.) Or a menu macro? (Maybe.)

For these reasons, it’s good to become familiar with most of BricsCAD’s customization possibili-
ties — even if you rarely use most of them. This way you craft a solution employing the best tools.
You will know when to give the job over to a professional programmer, yet maintain intelligent
oversight of the result.

A third solution is to learn about add-on programs available from amateur and professional program-
mers. Bricsys has an entire portion of its Web site dedicated to add-ons that works with BricsCAD at
https://www.bricsys.com/common/applications.

Applications that run on BricsCAD from third-party developers

As well, you may find utilities written for AutoCAD may well work in BricsCAD.

The bulk of the add-ons were written by programmers to solve their own problems with CAD. By
knowing how to customize BricsCAD, you can modify their routines to suit your needs, which is a
lot easier than writing it from scratch.

6 Customizing BricsCAD V19

VERSIONS OF BRICSCAD
There are several versions of BricsCAD, and this ebook is for all of them:

 Ð BricsCAD Classic handles nearly all of the customizations listed in this book; it does not support VBA program-
ming (found in this book), as well as COM, BRX, and .Net, not in this book.

 Ð BricsCAD Pro supports all customizations described by this ebook, and handles most APIs provided by Bricsys

 Ð BricsCAD Platinum is identical to Pro, as far as this book is concerned

 Ð BricsCAD BIM and BricsCAD Mechanical are also identical to Pro, as far as this book is concerned

 Ð BricsCAD Shape is a free 3D design program that has limited customization

See this Web page for tables that list the differences between the three primary editions:
https://www.bricsys.com/en_INTL/bricscad/compare/. The image below shows a small part of
the comparison table.

Comparing the three editions of BricsCAD

The free 30-day version of BricsCAD is the Platinum edition, so it is handy for trying out all of the
exercises in this book. Download your copy from https://www.bricsys.com/en_INTL/.

 1 Introduction to Customizing BricsCAD 7

61 Tips for BricsCAD Users

tip 1. To change menus, ribbon, and other interface elements, enter the Customize command.
You can modify the currently active customization file, or load another CUI file (for example, from
AutoCAD). See Chapter 5.

tip 2. BricsCAD groups all settings variables in a single dialog box, the Settings dialog box. Enter
the Settings command to open the dialog box. See Chapter 2.

tip 3. Watch BricsCAD tutorial movies at https://lessons.bricsys.com/. Many of the ones dealing
with customization were produced by the author of this book, Ralph Grabowski.

Web page listing tutorial videos for BricsCAD

tip 4. To turn the display of the command bar on and off, enter the CommandLine command
or press Ctrl+9. You can dock the command bar at the top or bottom of the BricsCAD application
window or place it anywhere on any monitor attached to your computer. Hold down the Ctrl key
(Cmd key on Macs) to prevent the command bar from docking.

Docked command bar

When the command bar is off, then the prompts are displayed by the status bar, and in the drawing
area. (See figures below)

 

Left: Command prompt displayed on the status bar; right: ...and in the drawing area

8 Customizing BricsCAD V19

tip 5. When you launch a command, a Prompt menu displays all options current
for the command. (See figure at left.) Use the mouse to select an option in the prompt
menu.

The display of the prompt menu is controlled through the PromptMenu variable.
In the Settings dialog box under Program Options Display, choose Prompt Menu,
and then select a location for the prompt menus to display. Choose ‘Don’t display
prompt menu’ to suppress the display of prompt menus.

tip 6. When you hover the cursor over a tool button, a tooltip is displayed, from
which you can read a brief explanation of the tool’s purpose. In addition, a line of help text is dis-
played on the status bar at the bottom of the BricsCAD application window.

Tooltip explaining the function of a button on the toolbar

tip 7. BricsCAD’s help contains general information about BricsCAD, a User Guide, the Command
Reference, System Variables, and the Developer Reference. You can download a free PDF version of
these documents from this Web page: https://www.bricsys.com/en_INTL/documentation/.

To open the local help file, enter the Help command. If you press F1 when a command is active,
then BricsCAD displays help specific to that command. (See figure below.)

Help for the Boundary command

 1 Introduction to Customizing BricsCAD 9

tip 8. When you are familiar with typing AutoCAD commands and aliases at the
command prompt, you can use exactly the same names in BricsCAD.

tip 9. The best way to open other toolbars is to right-click a toolbar or the ribbon,
and then click on BRICSCAD to see a list of all available toolbars. (See figure.) Click
on the name of the toolbar you want to open. Toolbars that are already open have a
check mark next to them. When you click a toolbar that is open, it closes.

tip 10. User interface elements, such as toolbars, ribbon, the command bar, and
the Properties panel, can be placed anywhere on the screen. Press and hold the left
mouse button to drag them to another location.

To prevent a toolbar or panel from docking against the edge of the BricsCAD window,
press and hold the Ctrl key (Cmd key on MacOS) when positioning the item.

The LockUI variable determines if toolbars and panels are to be locked into place.

tip 11. To change the color of the screen background, follow these steps:

1.	 Enter	the	Settings	command

2.	 In	the	search	field,	enter	“background	color”	and	then	press	Enter

3.	 Select	the	color	you	want	for	the	background	

Alternatively, enter variable names at the command prompts. For instance:

 BkgColor	directly	controls	the	background	of	the	model	space	background

 BkgColorPs	directly	controls	the	background	of	the	paper	space	background

tip 12. Use the tools on the Inquiry toolbar to measure the distance between two points, to find
the area of closed entity, or to read the x,y,z coordinates of a point.

From left to right: Distance, Area, Mass Properties, ID Coordinates | List Entity Data, Drawing Status, Time Variables

10 Customizing BricsCAD V19

tip 13. To choose an option quickly during a command, just type the capitalized letter of the
option’s name. When drawing a polyline, for instance, type a to start drawing arc segments and
type l to switch back to drawing line segments.
: PLINE
Start of polyline:
Set next point or [draw Arcs/Distance/Halfwidth/Width]:a
Set end of arc or [draw Lines/Angle/CEnter/Direction/Halfwidth/Radius/Second point/Width]:l
Set next point or [draw Arcs/Distance/Halfwidth/Width]:

tip 14. BricsCAD’s drawing elements, such as layers, linetypes, text styles, dimension styles,
and blocks, can be copied between open drawings using the Drawing Explorer. Follow these steps:

1.	 Enter	the	Explorer	command,	and	then	choose	the	element	you	want	to	copy,	such	as	“Linetypes”

2.	 Right-click	it	“Linetypes,”	and	then	choose	Copy	

3.	 Switch	to	the	other	drawing,	and	then	paste	the	item

Pasting a linetype into another drawing

tip 15. An alias for a command can be a single letter, such as L for “Line,” and it can be a different
name, such as axis for “infline”. To edit existing aliases or add new aliases, enter the Customize
command, and then select Command Aliases tab on the Customize dialog.

tip 16. To recall the previous selection set for the next command, hoose Previous Selection in the
Prompt bar or type p in the command bar to, for instance, move a previously copied selection set.

tip 17. You can use any drawing you want as the template for future drawings. Template draw-
ings can contain blocks, borders, and any other geometry, in addition to all your preferred set-
tings. To set the default template drawing in the Settings dialog, go to Program Options | Files |
Templates | Template.

 1 Introduction to Customizing BricsCAD 11

tip 18. Using entity snaps, you will draw faster and more accurately by snapping to their geom-
etry, such as end points and mid points of lines. To quickly set and unset specific snap types, click a
button on the Entity Snaps toolbar. The recessed button (or blue a border) indicates that the entity
snap is active. (See figure below.) Click again to deactivate.

Toggling entity snaps

tip 19. The Properties panel performs three tasks:

Properties being reported for a polyline entity

•	 When	nothing	is	selected,	then	it	sets	the	working	properties	for	entities	(color,	layer,	and	so	on)

•	 When	one	entity	is	selected,	it	edits	the	properties	of	the	entity

•	 When	two	or	more	entities	are	selected,	it	edits	the	shared	properties	of	them

To open the Properties panel, enter the Properties command or else press Ctrl+1.

tip 20. You can resize the height of the command bar by dragging its top edge (when docked at
the bottom) or its bottom edge (when docked at the top).

tip 21. In each drawing you can define your own coordinate systems (UCS), which can then be
saved and recalled as you need them. This is useful when you need to draw at angles other than
the regular orthographic x,y-plane. To have BricsCAD automatically place the working place, turn
on DUCS (dynamic UCS) on the status bar.

12 Customizing BricsCAD V19

Tip 22. Documents from other programs (e.g. text document and spreadsheets) can be dragged
from the Windows Explorer window into your BricsCAD drawings (Windows only).

Double clicking the inserted document opens the source application.

To see the options available, drag the file from Explorer into BricsCAD using the right mouse but-
ton. In this case, the following dialog box is displayed:

Dialog box displayed by right-button dragging into BricsCAD

tip 23. To toggle the display of the status bar, enter the StatBar command, or else press
Shift+F3.

tip 24. When using flyover snap over high densities of entities, you can cycle through possible
snap points by pressing the Tab key repeatedly. The entity that is highlighted is snapped to.

tip 25. Polylines consist of a chain of line and/or arc segments. Polylines have properties that
ordinary lines lack, such as width, elevation and thickness.

tip 26. Use the Follow option if you want to continue drawing lines, arcs, or polylines from the
last point and in the same direction.

tip 27. In the Drawing Explorer, you can see a thumbnail image of all blocks in the drawing. To
insert the block in the current drawing, click the Insert button.

tip 28. To see the length and angle of the current line segment while drawing lines or polylines,
right click the coordinates field in the status bar and then choose Relative from the context menu.

Turning on relative coordinates

tip 29. Use the Match tool (the ‘brush’) on the Standard toolbar to apply the properties of
an entity, such as color, linetype, and thickness, to other entities.

 1 Introduction to Customizing BricsCAD 13

tip 30. Click ORTHO in the status bar or press F8 to toggle the orthogonal setting. Holding down
the Shift key while you draw temporarily reverses the ortho setting.

tip 31. Double-click the left end of the status bar to toggle the display of the command bar.

tip 32. Choose New Wizard in the File menu, and then choose the Use a Wizard option to cre-
ate a new drawing from scratch. The new drawing wizard guides you through all the basic drawing
settings.

Starting a new drawing with the assistance of a wizard

tip 33. BricsCAD provides dynamic view control using the mouse:

Mouse motion BricsCAD Action

Hold down middle button Real-time pan
Roll middle button (roller wheel) Real-time zoom
Hold down Shift key with middle button Real-time orbit (3D rotation)

tip 34. The Explode command breaks complex entities, such as blocks and polylines, into their
component pieces.

tip 35. Purging unused definitions might reduce the size of your drawings dramatically. Enter
the Purge command, then choose All to purge all unused definitions. Purging can also be done in
the Drawing Explorer with the Purge button.

tip 36. The CENter entity snap recognizes the center point of closed polylines — as well as circles
and arcs. This works for even non-circular ones.

tip 37. Many settings can be changed by clicking or right-clicking on each of the fields in the
status bar at the bottom of the window.

14 Customizing BricsCAD V19

Click the small down arrow at the right hand side of the status bar to control the display of
the various fields in the status bar.

Toggling what gets displayed by the status bar

tip 38. To copy or move entities between drawings, start the command in the source drawing,
then switch to the target drawing when prompted for the displacement point. Press and hold the
Ctrl key (Cmd key on Macs), then hit the Tab key to cycle through all open drawings.

Tip 39. The Bisect option of the Ray command bisects angles, lines, arcs, and polylines:

Vertex	option	bisects	an	angle

Entity	option	draws	the	ray	perpendicular	to	the	midpoint	of	the	entity

tip 40. The Save Block tool in the Drawing Explorer saves the selected block to a separate
drawing.

tip 41. In the Drawing Explorer, you can click in the Current column to make an item current.
For example, to set a layer as the current layer, click in the Current column of that layer. A blue
dot appears in this column to mark the layer as current.

tip 42.  Use the Mail command to compose a mail with the current drawing as an attachment.

tip 43. How to turn an7 arc into a circle: use the Circle command’s turn Arc into circle option.

tip 44. Scroll bars allow to pan horizontally and vertically. To toggle the display of the scroll bars,
enter the ScrollBar command or press Shift+F4.

tip 45. Use the Join command to turn several entities with common endpoints into a single one:
lines, polylines, 3D polylines, circular and elliptical arcs, splines, and helixes.

tip 46. How to create keyboard shortcuts: enter the Customize command, and then choose the
Keyboard tab. You can use any key on the keyboard and any function key, together combinations
with Shift, Alt, and Ctrl. See Chapter 10 more information.

 1 Introduction to Customizing BricsCAD 15

Customizing keyboard shortcuts

Linux and Windows versions of BricsCAD use the same Cmd and Alt keys for shortcuts. In the MacOS
version, Ctrl and Alt are not used; instead, mentally map them to the Mac’s Cmd and Option keys:

Linux, Windows MacOS

 Ctrl Cmd
 Alt Options

tip 47. The Plan command restores the plan view of the current coordinate system, as well as in
the World Coordinate System (WCS) or any saved User Coordinate System (UCS). From the View
menu, choose Plan View.

If the UcsFollow variable is on, plan view is restored automatically when the coordinate system
changes.

tip 48. Select an entity, then type List in the command bar to display the information about the
selected entity in the Prompt History window.

List command displaying its report in the Prompt History window

tip 49. Block attribute data is exported to external data files with the AttExt command.

tip 50. Select the Explode option of the Insert Block dialog to break a block into its component
pieces upon insertion.

16 Customizing BricsCAD V19

tip 51. The QSelect command creates a selection set using a variety of criteria such as such as
layer, color, and entity type.

tip 52. You can change the pattern style of an existing hatch in the Properties panel. Follow
these steps:

1.	 Select	the	hatch

2.	 Choose	Pattern name	in	the	Properties	panel

3.	 Click	the	Browse	button	to	select	a	different	hatch	pattern	in	the	Hatch	Pattern	palette

Changing a hatch pattern quickly

tip 53. BricsCAD automatically saves your work at a specified time interval. In the Settings dia-
log, under Program Options | Open and Save, choose Save time interval, then specify the time
interval in minutes.

In the Settings dialog, under Program Options | Files you can specify the folder in which to store
automatic saves.

tip 54. You can easily find any variable or program setting using the search field in the Settings
dialog. To open the Settings dialog, enter the Settings command. Click the binoculars button to
define the search target: variable names, titles, and/or help text.

Searching for variable names in the Settings dialog box

tip 55. To open a drawing in BricsCAD quickly, drag it from File Explorer (Finder on Macs) to
the title bar of BricsCAD. To insert the drawing as a block, drag it instead into the drawing area.

tip 56. To make a layer current by selecting an entity on that layer, click the Set Layer by
Entity tool button on the Layer toolbar.

tip 57. To override the currently active entity snaps while you are drawing, press and hold the
Shift key, then right-click and choose an entity snap from the context menu, which will then be

 1 Introduction to Customizing BricsCAD 17

used to specify the next point.

tip 58. To get a count of entities in the drawing quickly, enter Ctrl+A to select all entities, and
then cast a glance at the Properties panel’s droplist.

tip 59: To view the contents of each layer individually, open the Drawing Explorer to the Layers
node, and then click on each layer name.

tip 60: To restore all of the user interface to its default state, click the Revert to defaults button
in the Customize dialog box.

tip 61: To learn more about customization, read this book!

18 Customizing BricsCAD V19

For Further Reference

This book provides much documentation and many tutorials for customizing most aspects of Bric-
sCAD, but even at 600 pages it doesn’t cover everything. Here are additional references:

REFERENCE AND TUTORIAL BOOKS
Bricsys offers these titles for learning how to operate BricsCAD. Each is a PDF file that you download
for free from https://help.bricsys.com/hc/en-us.

 Inside BricsCAD	—	teaches	newcomers	how	to	draft	with	BricsCAD	through	many	step-by-step	tutorials.		

Nearly	400	color	pages.		

 BricsCAD for AutoCAD Users —	clearly	explains	the	similarities	and	differences	between	BricsCAD	and	Auto-

CAD.	Over	300	color	pages.	

 Customizing BricsCAD —	additional	copies	of	this	book	are	available	from	Bricsys.

BRICSCAD API REFERENCES
Bricsys provides online references for programmers at
https://bricsys.com/bricscad/help/en_US/V19/DevRef/index.html. The Web site provides
information on the following APIs:

 Ð LISP (LISt Processing)

 Ð Additional LISP functions, such as VLA, VLAX, and VLE

 Ð DCL (Dialog Control Language) — incomplete

 Ð DIESEL (Direct Interpretively Evaluated String Expression Language)

 Ð VBA (Visual Basic for Applications) — incomplete

 Ð COM (Component Object Model)

 Ð BRX (BricsCAD Runtime eXtension) and TX (Teigha eXtension; formerly DRX) — incomplete

 Ð .Net

 Ð SDS (Softdesk Development System; deprecated)

DWG, DXF, AND DWF REFERENCES
The Open Design Alliance provides the specifications of the DWG file format, as they under-
stand it to be. Covers Release 13 through 2013. Download in PDF format (free; 262 pages) from
https://www.opendesign.com/files/guestdownloads/OpenDesign_Specification_for_.dwg_files.pdf
Autodesk does not document DWG.

Autodesk provides references for the DXF format (drawing interchange format). Covers Release
2012. Download in PDF format (free; 270 pages) from
http://images.autodesk.com/adsk/files/autocad_2012_pdf_dxf-reference_enu.pdf.

Adjusting BricsCAD’s
Settings

CHAPTER SUMMARY

The following topics are covered by this chapter:

• Touring the Settings dialog box

• Understanding system variables and preferences

• For the complete list of variables and preferences, see Appendix A

• Additional system variables and preferences

CHAPTER 2

The Settings dialog box is BricsCAD’s Control Central. This is where you make adjustments
to the settings of over 900 variables. BricsCAD uses variables (settings) to control, change, and
remember the states of drawings, dimensions, the user interface, and the program itself.

For instance, through this dialog box you change the background color of the drawing area, or
specify the name and path for the default template file. When you want to change the default radius
of fillets, you select the Settings option of the Fillet command: this action opens the Settings dialog
box at the Chamfer/Fillet section: you are changing the value of variable FilletRad.

20 Customizing BricsCAD V19

Many BricsCAD variables have names that are the same as in AutoCAD and IntelliCAD, such as
FilletRad. But BricsCAD also has it own set of unique variables that it names “preferences,” such
as BkgColor to set the background color of the drawing area. BricsCAD-only variable names are
tagged in the Settings dialog box.

Certain commands take you directly to the related section of the Settings dialog box, such as the
DdPMode for setting the display style of points. Other commands have a Settings or Options op-
tion that does the same thing, such as the Fillet command’s Settings option I mentioned earlier.

A handy way to get to some settings is by right-clicking a button on the status bar, and then choos-
ing Settings from the shortcut menu. For example, you can change the settings of grid, snap, and
Quad in this way.

Touring the Settings Dialog Box

To access the dialog box, enter the Settings command. When the dialog box appears, notice that
the toolbar offers to sort variables into groups:

 Ð Drawing — settings affecting how drawings are created

 Ð Dimensions — settings affecting the styles of dimensions

 Ð Program Options — settings affecting how the program looks and operates

Plus, additional settings for optional add-ons:

 Ð Compare — setting for 3D model comparison, part of the Mechanical add-on

 Ð Sheet Metal — settings for sheet metal design, part of the Mechanical add-on

 Ð Communicator — settings for file translation, part of the Communicator add-on

 Ð Standard Parts — settings for sheet metal design, part of the Mechanical add-on

 Ð BIM — settings for building information modeling, part of the BIM add-on

Settings dialog box

 2 Adjusting Settings in BricsCAD 21

———

First, we examine the functions of the Settings dialog box’s toolbar, and then we tackle the body
of the dialog box.

SETTINGS DIALOG BOX: TOOLBAR

The toolbar is at the top of the Settings dialog box. It changes the way the Settings dialog box pres-
ents information and accesses utility commands.

Toolbar in the Settings dialog box

Let’s take a look at the functions of the toolbar buttons, beginning at the left end. (new in V19: the
toolbar changes some of its buttons.)

Categorized/Alphabetic Sorting
 You can search for settings by browsing through categories, or you can look through them

alphabetically, or you can use the search field. I tend to use the search field, which I describe later.

The first two buttons on the toolbar switch the dialog box’s listing of variables between Categorized
and Alphabetic modes:

 Ð Categorized mode is illustrated on the facing page, and lists variables in related groups

 Ð Alphabetic mode is shown below, and lists them alphabetically by description (rather than by name)

Because BricsCAD lists variables alphabetically by their description (instead of by their actual
names), “2D closed B-spline curve import mode” is the first one on the list, even though its variable
name is DgnImp2dCloseBSpline.

Settings dialog box displaying settings in alphabetical order

22 Customizing BricsCAD V19

Show Differences
(new in V19) The Show Differences button clears the dialog box of all settings, except for those
whose values have changed from the initial (default) values. Make a change to a variable, and it will
show up here. This is handy for figuring out what might have changed.

Settings dialog box showing differences from initial values

We generally don’t know what the default value of a variable is, and so BricsCAD helps us out here.
To change a value back to the default, right-click its name, and then choose Restore Default Value
from the shortcut menu.

Changing a variable back to its default value

Notice that the variables with changes are shown in blue. The same happens in the regular dialog
box. You can change this color and the kinds of variables listed, as described next.

———

(new in V19) The three direct access buttons — to jump directly to the Drawing, Dimen-
sions, and Program Options settings — were removed from V19.

Dialog Configuration
(new in V19) The Dialog Configurations button lets you search for variables, configure what is
searched, and how the differences are shown. When you click the button, then BricsCAD displays
this dialog box:

 2 Adjusting Settings in BricsCAD 23

BricsCAD searches for the values of variables when the In variable values option is turned on.

Search. The Search options are useful in limiting where BricsCAD performs its searches. I tend to
leave In Variable Names and In Variables Titles turned on, with the others turned off.

While you can use the Find What field that’s right here in this sub-dialog box, it doesn’t display
color change or do real-time searches, and so I don’t find it useful. Use the toolbar’s Search field
instead, as described next.

(new in V19) Modified Settings. The Modified Settings section lets you change the color of the
changed variables, as well as to determine which variables are displayed by the Show Differences
dialog box.

 Ð Display All — lists all variables whose values have changed

 Ð Display Settings Stored in Drawing — lists only those variables that affect the current drawing

 Ð Display Settings Not Stored in Drawing — lists those that affect all drawings

Finding Variables
 The best item in the toolbar is the real-time search field. It lets you

directly access variables when you know the first few letters of their names or descriptions. I find
this the easiest way to navigate the 900+ entries in the dialog box.

As you type into the search field, BricsCAD immediately jumps to the first item that matches the
letters. For instance, when entering “lastpoint,” the following occurs:

Type	l	—	focus	jumps	to	Insertion	Unit,	because	the	description	contains	the	letter	‘l’

Type	la	—	focus	jumps	to	Unit	Mode,	because	‘la’	is	in	“displayed”	in	the	description

Type	las	—	focus	jumps	to	Text	Angle,	because	of	‘las’	in	“last”	of	the	description

Type	lastp	—	focus	stays	in	Last	Point,	because	of	‘lastp’	in	“lastpoint”	variable	name

If the LastPoint variable is not the one that I want, then I click the down arrow to move to the
next instance of a candidate that matches “lastp.” Continuing with this example, when I click
the focus jumps to LastPrompt.

24 Customizing BricsCAD V19

Sometimes the color of the search field changes. The colors report the status of the search term
that you entered:

Snow —	two	or	more	words	match	the	search	phrase

Lime —	only	one	word	matches	the	search	phrase,	or	a	repeated	search	has	returned	to	the	start

Tangerine —	no	words	match	the	search	phrase

Export Settings
 The last button is Export and is saves all settings and values to a CSV file, short for “comma-

separated values.” The file contains the names of variables in true alphabetical order, their current
values, and other information.

Each value is separated by a comma, as shown by this sample:
AUTOSNAP,reg,int,RTSHORT,63,63,,AutoSnap

AttractionDistance,prf,int,RTNONE,3,3,,Grips attraction distance

AutoTrackingVecColor,prf,int,RTNONE,171,171,,Auto tracking vector color

AutosaveChecksOnlyFirstBitDBMOD,prf,bool,RTNONE,1,1,,Ignore all but first bit of DBMOD for autosave

BACKZ,drw,real,RTREAL,0,0,,Back clipping plane offset

BASEFILE,reg,str,RTSTR,,,,Template

Fields are separated by commas. Coordinates normally use commas, such as 2,3,4 and so in this
CSV file they are replaced by semi-colons, such as 2;3;4. The meaning of each field is explained
by the table below using the example of AutoSnap.
AUTOSNAP,reg,int,RTSHORT,63,63,,AutoSnap

Data Example Field Options Meaning

Name AUTOSNAP Variable name
 UPPERCASE System variable

 MixedCase Unique to BricsCAD

Save mode reg Location where the value is saved
 not Not saved
 prf In BricsCAD preferences
 reg In the Windows registry
 drw In the drawing

 2 Adjusting Settings in BricsCAD 25

Save type Type of value
 0 bool Boolean (a toggle, such as 0 or 1)
 4 int Integer (no decimal places)
 10000000 long Long integer (greater than 216)
 0 .5;0 .5 pt2d 2D point (x,y)
 1;0;0 pt3d 3D point (x,y,z)
 25 .4 real Real number (with decimal places)
 ANSI31 str Strings (text)

Restype Numerical type of value
 4 RTSHORT Short integer (same as integer)
 10000000 RTLONG Long integer
 0 .5;0 .5 RTPOINT 2D and 3D point
 25 .4 RTREAL Real number
 ANSI31 RTSTR String
 RTNONE Stored in preferences

Default value 63 Specifies the default value, as found in the default template file
Current value 63 Specifies the current value
Status Reports when the value is read-only (cannot be changed by the user)
Title AutoSnap Briefly describes the purpose of the variable

As a file format, CSV is “universal,”because it can be imported easily into spreadsheets and data-
bases. These programs use the comma to identify where to separate the fields into columns. In a
word processor, I use the Find and Replace command to change commas to tabs.

Exporting Variables
To export the settings data, follow these steps:

1.	 Click	the	Export button.	Notice	the	Export	Settings	dialog	box.

Saving variables to a .csv file

2.	 Choose	a	folder	in	which	to	store	the	file.	You	can	change	the	file’s	name,	but	make	sure	you	leave	the	exten-

sion	set	to	“.csv”.

3.	 Click	Save.

The data is exported from BricsCAD in alphabetical order, whether or not the current setting is
Alphabetical or Categorized. To open the exported file in an application, such as the Calc spread-
sheet program from LibreOffice, continue with these steps:

26 Customizing BricsCAD V19

1.	 Start	LibreOffice.	(You	can	download	this	software	free	of	charge	from	http://www.libreoffice.org.	It	is	avail-

able	for	Windows,	Linux,	and	MacOS	—	just	like	BricsCAD!)	

The initial LibreOffice interface

2.	 From	the	File	Manager	(Finder	on	the	Mac),	drag	the	settings.csv file into	the	LibreOffice	window	shown	above.

3.	 Notice	the	Text	Import	dialog	box.	It	shows	you	how	LibreOffice	proposes	to	separate	the	comma-delimited	

data	into	columns.	Under	Separator	Options,	ensure	that	Comma	is	selected,	and	then	click	OK.

Formatting imported text

4.	 Notice	that	the	settings	data	appears	in	columns	in	the	spreadsheet.	Format	and	edit	the	text	as	you	wish.

 2 Adjusting Settings in BricsCAD 27

ACCESSING VARIABLES AND CHANGING VALUES

To access the value of a variable, you can use the Find field described above, or else click the
node boxes to open sections. (Click nodes to collapse sections.) Notice the nodes:

To change the value of a variables, follow these steps:

1.	 Navigate	to	the	variable	you	want	to	change.

2.	 Click	on	the	name	of	the	variable.

3.	 Depending	on	the	nature	of	the	variable,	you	take	one	of	these	actions	to	change	the	value:

•	 Text/numerical	variable	—	type	in	a	new	piece	of	text	or	a	new	number

•	 Toggle	variable	—	click	a	check	box	to	turn	it	on	(green	check	mark)	or	off	(none)

•	 Option	variable	—	select	an	option	from	a	droplist

•	 Value	variable	—	enter	a	new	value	

•	 File	variable	—	click	the	 	Browse	button	to	open	the	file	dialog	box	

After it is changed, the variable name and its value turns to boldface — a way of alerting you to
changes. Not all variables can be changed.

Those with the “read-only” setting cannot be changed and so are shown with gray text. (See figure
below.) When you click on them, they do not react.

Variables Specific to Windows
Some preferences are specific to the Windows version of BricsCAD, such as those related to OLE.
They have no effect in Linux or Mac.OS

28 Customizing BricsCAD V19

Changing Variables at the Command Prompt

Outside of the Settings dialog box, you can change the values of variables at the ‘ : ’ command
prompt. There are two ways to do this.

•	 Enter	the	variable	name	at	the	command	prompt	just	like	a	command	name:
 : gripblock
 New current value for GRIPBLOCK (Off or On) <Off>: on

	 The	values	in	the	parentheses	report	the	valid	range	of	values,	such	as	(Off or On);	the	value	inside	the	angle	

brackets	report	the	current	(default)	value,	such	as	<Off>.	I	find	this	useful	for	determining	the	range	of	al-

lowable	values.	

•	 Use	the	SetVar	command.	The	only	advantage	to	this	command	is	that	it	also	lets	you	list	the	names	of	vari-

ables,	if	you	are	unsure	of	the	exact	spelling.	Here’s	how	to	do	this:

1.	 First,	enter	a	?	(question	mark)	at	the	prompt:

 : setvar
 Variable name or ? <GRIPBLOCK>: ?

2.	 Then,	type	the	part	of	the	name	that	you	know,	and	use	an	*	(asterisk)	to	represent	the	unknown	part	of	

the	name.

 Variable(s) to list <*>: grip*

 GRIPBLOCK 0
 GRIPCOLOR 72
 GRIPDYNCOLOR 140
 GRIPHOT 240
 GRIPHOVER 150
 GRIPOBJLIMIT 100
 GRIPS 1

TIP	 To	get	a	list	of	variable	names	and	their	current	values,	press	Enter	at	the	‘Variable(s)	to	list	<*>:’	
prompt.		
To	capture	the	list	to	a	file,	use	the	LogFileOn	command	before	entering	SetVar,	and	then	LogFileOff	after-
wards.	The	location	of	the	log	file	is	given	by	variable	LogFilePath.

(Historical note: The Settings dialog box was added with BricsCAD V8, replacing the Options dia-
log box of earlier releases.) See Appendix B for a complete list of all BricsCAD variable names and
default values in alphabetical order.

Changing BricsCAD’s
Environment

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Starting BricsCAD

• Setting command line options (not available in Mac)

• Changing screen and other colors of the user interface

• Specifying support file paths

• Launching the user profile manager (not available in Linux or Mac)

BricsCAD allows you great flexibility in changing the way it looks and works. The first few
chapters of this book are going to show you how to change the look of BricsCAD; later ones con-
centrate on changing the how it works.

This chapter tells you how to change the ways BricsCAD starts up, and how to use the Settings
dialog box to change the look of BricsCAD’s user interface. For example, you can change the fonts
and colors of the command bar, the background color of the drawing area, and the size of the cross
hair cursor.

CHAPTER 3

30 Customizing BricsCAD V19

Starting BricsCAD

You probably know about these ways to start BricsCAD:

 Ð Double-click the BricsCAD icon found on your computer’s desktop

 Ð Or, on the taskbar of most releases of Windows, click the Start button, and then select All Programs | Bricsys
| BricsCAD V19 | BricsCAD or something similar

•	 In	Windows	8	and	Windows	10	tablet	mode,	click	the	BricsCAD	icon	in	the	Start	screen.

•	 In	Linux,	click	the	Main Menu	button,	and	then	select Graphics | BricsCAD

•	 In	the	MacOS	dock,	click	the	Applications folder,	and	then	select BricsCAD

 Ð Or, in Windows Explorer (or Linux File Browser or MacOS Finder), double-click the name of a .dwg file; this
option works only when BricsCAD is the default program assigned to .dwg files

But there are other ways to launch the program. These variations are described next.

COMMAND LINE OPTIONS

It was common knowledge in the days of the DOS and Unix operating systems that programs could
use options to start up. Windows, MaOS, and Linux hide much of what goes on behind their graphical
user interfaces, and so command-line options are no longer in common use. They are, nevertheless,
still available, and here I show you how to use them with BricsCAD.

Normally, BricsCAD starts with a new, blank drawing. You can, however, have BricsCAD start with a
specific file by editing the target value. BricsCAD can be made to load drawings — and other types
of files — as it starts; you just specify the file name in the OS (operating system) command line. In
a moment, I’ll tell you how to access the command line.

The following table lists the file types that can be used at the command line, and what they do
when BricsCAD starts up:

File Type Meaning

 .CUI Loads the file that customizes the user interface
 .DLL Loads ADS/SDS or DRX/ARX programs (dynamic link libraries)
 .DSD Plots files specified earlier by the Publish command
 .DWG Opens a drawing file made by BricsCAD, AutoCAD, and other CAD programs
 .DWT Opens a template file that specifies the initial settings of new drawings
 .DXF Opens drawing interchange format files from other CAD programs
 .LSP Loads LISP and AutoLISP routines
 .MNU Loads menu files from older releases of BricsCAD and AutoCAD
 .SCR Runs a script file
 .SLD Displays a slide file

 3 Changing BricsCAD’s Environment 31

Here’s how to access the command line in Windows and Linux. This feature is not available on MacOS.

1.	 On	the	desktop	of	Windows	or	Linux,	right-click	the	BricsCAD	icon.	

	 (In	Windows	8/10,	you	have	to	work	with	the	icons	that	are	found	on	the	Windows	7-style	desktop,	because	

the	tiles	on	the	Metro-style	Start	screen	for	tablet	mode	do	not	support	properties.)	

2.	 Notice	the	shortcut	menu.	In	the	shortcut	menu,	select	Properties.

Left: Accessing icon properties in Windows 7... right: ...and in Linux Mint

3.	 In	the	Windows	Properties	dialog	box,	select	the	Shortcut	tab.	

	 In	the	Linux	Properties	dialog	box,	select	the	Launcher	tab.

Properties dialog box in Windows

	 Notice	that	for	Windows	the	default	command-line	text	is	similar	to	the	path	listed	below:
 “C:\Program Files\Bricsys\BricsCAD V19 en_US\bricscad.exe”

	 Linux	is	more	straightforward:	it	knows	the	location	of	programs,	and	so	its	programs	do	not	need	to	be	

given	paths.

32 Customizing BricsCAD V19

The elements of a path , such as “C:\Program Files\Bricsys\BricsCAD V19 en_US\bricscad.exe”, are
as follows:

Path Meaning

C: Name of the disk drive
\Program Files Name of a folder
bricscad .exe Name of the BricsCAD program

 Quotation marks ("	and	")	are	needed	when	there	are	spaces	in	the	names	of	folders	and	programs	

 Colon	(:)		identifies	the	names	of	disk	drives,	such	as	C:	

 Back slashes	(\)	separate	the	names	of	folders.	The	folder	names	may	vary,	depending	on	where	BricsCAD	

was	installed	on	your	computer

Linux has these differences from Windows:

•	 Linux	uses	forward	slashes	(/)	to	separate	folder	names,	rather	than	backs	lashes	(\)

•	 The	path	starts	from	the	home	folder,	not	the	root	folder

•	 Path	and	file	names	are	case-sensitive	in	Linux,	so	“Documents”	is	a	different	name	from	“documents”

 4.	 Here	is	how	to	start	BricsCAD	with	a	specific	.dwg	drawing	file.	The	same	procedure	works	with	.dxf	transla-

tion	files,	as	well.	

	 In	the	Properties	dialog	box	in	Windows,	edit	the	text	in	the	Target box	by	adding	the	text	shown	in	color:
 "C:\Program Files\Bricsys\BricsCAD V19 en_US\bricscad.exe" "c:\folder\file name.dwg"

	 In	Linux,	add	the	path	to	the	drawing	file	to	the	Command	box:
 bricscad.exe "home/<login>/Documents/My Drawings/file name.dwg"

	 Replace	“<login>”	with	the	name	by	which	you	logged	into	your	Linux	computer.	In	my	case,	it	is	“ralphg,”	so	

the	path	looks	like	this:
 bricscad.exe "home/ralphg/Documents/My Drawings/file name.dwg"

	 	Notice	that:

•	 The	full	path	name	to	the	drawing	is	required

•	 Separate	pairs	of	quotation	marks	are	needed	for	the	names	of	the	program	and	the	file.	(Quotation	

marks	are	needed	only	when	paths	and	file	names	contain	spaces.)

5.	 Click	OK	in	Windows.	

	 In	Linux,	click	Close.

6.	 Test	your	modification	by	double-clicking	the	BricsCAD	icon.	The	program	should	start,	and	then	open	the	file.	

If	you	made	an	error,	you	will	receive	a	complaint	from	a	dialog	box,	such	as	this	one	in	Linux:

Warning message from the operating system

	 Reasons	for	errors	include	the	following	ones:

•	 The	file	name	was	incorrectly	spelled

•	 The	path	is	incorrect	or	incomplete

•	 The	file	is	missing	and	does	not	exist

•	 The	quotation	marks	are	unbalanced,	with	the	starting	or	ending	"	missing

 3 Changing BricsCAD’s Environment 33

CATALOG OF COMMAND-LINE SWITCHES

As it starts up, BricsCAD can open a number kinds of file types, as listed by the table earlier. For
instance, after starting it could run a script, or it could plot a number of drawings automatically
in batch mode.

When it comes to file types other than drawings, however, you need to use a command-line switch
to alert BricsCAD as to the type of file. It is called a “switch” because it switches the way BricsCAD
operates; for example, the /b switch instructs BricsCAD to run a script file following start-up.

To indicate a switch, Windows uses the forward slash (/), borrowed from DOS. Linux uses a dash
(-), borrowed from Unix. (This feature is not available on Mac.) Here is the complete list of switches
that BricsCAD accepts:

Windows Linux Meaning

/b filename.scr -b filename.scr Runs an .scr script file following start up
/l -l Suppresses the BricsCAD logo (splash screen)
/ld app .arx -ld app .arx Loads an ARx, BRx, or DRx application
/p profile.arg -p profile.arg Loads an alternate user profile
/pl plotlist .dsd -pl plotlist .dsd Plots silently in the background
/s path -s path Specifies alternative search paths for support files
/t path -t path Specifies the path and name of a .dwt template file

The following switches apply to Windows only; Linux does not support COM:
regserver . . . Registers BricsCAD’s COM (common object model)
unregserver . . . Unregisters COM

You can use any number of switches in a row to make multiple things happen as BricsCAD starts
up. For example, it could plot a number of drawings and then open a specific template file.

Let’s now go through a detailed description of each switch.

No Switch - Load Drawings
BricsCAD uses no switch to load one or more .dwg and/or .dxf files specified at the OS command line:

"c:\program files\bricsys\bricscad\bricscad.exe" "c:\my documents\filename.dwg" c:\dwg\filename.dxf

B Switch - Script Files
The b switch specifies the name of a .scr script file to run immediately after BricsCAD starts. The
“b” is short for batch. The switch is followed by the path and name of the script file. Here is an
example of the usage in Windows:
"c:\program files\bricsys\bricscad\bricscad.exe" /b "c:\BricsCAD\script file.scr"

See the later chapter on scripts to learn how to write your own script files.

34 Customizing BricsCAD V19

L Switch - No Logo
The l switch suppresses the logo at startup. The “l” is short for logo. This means that the splash
screen bearing the BricsCAD name and version number does not appear. Notice that this switch
appears by itself; no path or file name is associated with it.

In Windows, it looks like this:
"c:\program files\bricsys\bricscad\bricscad.exe" /l

 In Linux, it looks like this:
bricscad.exe -l

LD Switch - Application Load
The ld switch specifies the names of applications to load, specifically those written with Bricsys’s
BRx, the ODA’s DRx and Tx, or Autodesk’s ARx application programming interfaces — APIs. The
“ld” is short for load. This switch is useful when you want to load add-on programs right away as
BricsCAD starts.
"c:\program files\bricsys\bricscad\bricscad.exe" /ld "appname.brx"

S Switch - Search Support Paths
The s switch specifies alternative search paths for support files. The “s” is short for search. This
switch is useful when you want to load linetypes, patterns, and menu files provided by clients; you
don’t want to mess up your own setup, and so you place these files in their own folder, and then
point to the folder with this switch.

Notice that this switch specifies only paths, not any file names:
"c:\program files\bricsys\bricscad\bricscad.exe" /s "c:\client\support"

You can specify multiple paths by separating them with semicolons (;), like this:
"c:\program files\bricsys\bricscad\bricscad.exe" /s "c:\client1\support;c:\client2\support"

P Switch - User Profiles
The p switch loads an .arg user profile file. The “p” is short for profile. This file changes the way
that BricsCAD looks, as described more fully later in this chapter.

Here is an example of its use:
"c:\program files\bricsys\bricscad\bricscad.exe" /p "c:\bricscad\myui.arg"

TIP	 BricsCAD	includes	a	separate	utility	command	for	creating	and	editing	user	profiles,	ProfileManager,	
described	at	the	end	of	this	chapter.

 3 Changing BricsCAD’s Environment 35

PL Switch - Batch Plotting
The pl switch plots drawings in the background without showing the BricsCAD program window.
The “pl” is short for plot. It reads the files to be plotted from .dsd files, which are created earlier by
the Publish command in BricsCAD.

Here is an example of its use:
"c:\program files\bricsys\bricscad\bricscad.exe" /pl "c:\bricscad\plotlist.dsd"

BricsCAD reads the .dsd file and then plots the drawing according the instructions contained therein.
The .dsd file saved by the Publish command specifies the file name, layouts, page setups, plotter
and printer names, orientation, plot scale, number of copies, optional plot stamp, and the order in
which to plot the files.

The .dsd extension is optional. When the file name is missing, however, BricsCAD simply exits.

TIP	 When	BricsCAD	starts	with	the	/pl switch,	it	ignores	the	setting	of	SingletonMode,	and	so	mul-
tiple	instances	of	the	program	can	be	launched	irregardless.

T Switch - Template Files
The t switch opens BricsCAD with a new drawing based on the .dwt template file specified by this
switch. The “t” is short for template. This file changes the way that the drawing initially looks.

Here is an example of its use:
"c:\program files\bricsys\bricscad\bricscad.exe" /t "c:\drawings\officetemplate.dwt"

Regserver and Unregserver Switches
The regserver and unregserver switches register and unregister BricsCAD’s COM common object
model. They operate only with Windows, because Microsoft does not provide COM for Linux or
MacOS systems.

36 Customizing BricsCAD V19

Changing the Colors of the User Interface

BricsCAD allows you to change some aspects of its user interface directly, while other aspects are
controlled by Windows. With BricsCAD, the changes are made through the Settings dialog box.

BACKGROUND COLOR

The first change I always make to a new CAD installation is to the background color of the drawing
area. Usually, it are colored black by default.

(History note: Black was the traditional color in the days when CAD ran on the DOS operating
systems. Some users prefer the dark color, because entity colors look more vibrant against it.
Others prefer a white background, because that most closely resembles the paper upon which
the drawing will be printed. I prefer the white background color.)

In BricsCAD, you the change background color like this:

1.	 Enter	the	Settings command.	Notice	the	Settings	dialog	box.

Settings dialog box

2.	 In	the	dialog	box,	enter	“background	color”	in	the	search	field.		If	the	field	turns	orange,	it’s	because	you	

have	misspelled	the	word(s).	Notice	that	dialog	box	jumps	to	the	Background	Color	variable.	

Searching for “background color” variable

 3 Changing BricsCAD’s Environment 37

5.	 Click	the	droplist	adjacent	to	Background Color,	and	then	choose	a	color,	such	as	“White.”

Choosing a different color for the paper space background

The changes you make in the Settings dialog box have an immediate effect in BricsCAD. The back-
ground color changes as soon as you select a different color.

TIP	 If	the	color	you	are	looking	for	is	not	on	the	droplist,	then	click	Select Color	to	access	the	Color	
dialog	box.	Choose	a	color	from	the	dialog	box,	and	then	click	OK.	

In a similar manner, you can make changes to the background color of paper space (layouts) —
and many other areas of BrisCAD. For layouts, this is done with the Paper Space Background
Color option. (It affects the color of the “paper” in layouts, not the color of the background.)

There is no “OK” or “Apply” button to click, because changes take effect immediately. Instead, click
the dialog box’s Close button:

Closing a dialog box

If, after exiting the Settings dialog box, you want to revert the value, just enter the U (undo) command.

CHANGING CURSOR COLOR AND SIZE

In the drawing area, BricsCAD displays a “tri-color” crosshair cursor that has a different color for
each of the axes. The UCS icon follows the same color scheme.

Tri-color crosshair cursor

Tri-color UCS icon

Red = x
Green = y
Blue = z

Colors of the cursor and UCS icon

By default, the colors are assigned as follows:

Axis Default Color Color Number

x Red 11
y Green 112
z Blue 150

38 Customizing BricsCAD V19

You change its color and size of the crosshair cursor like this:

1.	 In	the	Setting	dialog	box’s	Program Options	section,	enter	“x	axis	color”	in	the	Search	field.	

2.	 Choose X axis Color,	and	then	change	its	color.

Changing the color of the cursor axes

3.	 Repeat	for Y axis Color	and	Z axis Color.	

TIP		 The	changes	you	make	to	the	color	of	cursor’s	axes	have	no	effect	the	colors	of	the	UCS	icon’s	axes,	
which	cannot	be	customized.

4. If	you	wish,	you	can	also	change	the	size	of	the	cursor	with	the	Crosshairs Size	setting.	The	default	is	3,	which	

means	3%	of	the	screen	size.

	 A	value	of	100	(percent)	makes	the	cursor	full-size.

Normally, the crosshair cursor appears only when you use a drawing or editing command. If you
want the crosshair cursor to always be on, then turn on the “Pointer defaults to crosshairs” option
of the Always Use Crosshairs option.

DISPLAY SETTINGS

Here are settings that affect the BricsCAD display:

Display Setting Variable Name Meaning

Background Color BkColor Sets background color of model space drawing area
Paper Space Background Color BkColorPs Sets layout mode’s paper color

X Axis Color ColorX Specifies color of crosshair cursor’s x axis
Y Axis Color ColorY Specifies color of crosshair cursor’s y axis
Z Axis Color ColorZ Specifies color of crosshair cursor’s z axis

Always Use Crosshairs AlwaysUseCrosshair Displays crosshair cursor in place of pointer cursor
Crosshairs Size CursorSize Sizes cursor cross hairs, as a percentage of drawing area

 3 Changing BricsCAD’s Environment 39

Interface Parameters Controlled By the OS

Operating systems control some of aspects of BricsCAD’s user interface, such as fonts and colors
used by menus. This level of personalization is not available in Windows 8 or 10. In Windows 7,
follow these steps:

1.	 Right-click	the	desktop,	and	then	select	Personalize.	

2.	 Click	Windows Color	and	then	choose	Advanced Appearance Properties.	

Customizing the appearance of Windows

3.	 In	the	Window	Color	and	Appearance	dialog	box,	change	the	fonts	and	color	user	interface	elements.

In Linux, follow these steps:

1.	 Right-click	the	desktop,	and	then	select	Change Desktop Background.	

2.	 Click	Fonts	to	change	the	default	fonts	used	for	the	interface.	

3.	 Choose	Theme	to	set	the	overall	look	and	color	of	dialog	boxes	and	other	UI	elements.

Customizing the appearance of Linux

In MacOS, follow these steps:

1.		 From	the	dock,	choose	Settings.

2.		 In	the	System	Preferences	folder,	choose	General.

40 Customizing BricsCAD V19

3.	 Make	changes	as	desired.

General settings for MacOS

SNAP MARKER OPTIONS

Snap markers display information at the cursor about current object (or entity) snap modes.
BricsCAD allows you to choose the color, and other options, for snap markers and snap cursors.
Some of the settings are illustrated below:

Snap marker size.
Snap marker thickness.

Snap marker color.

Snap tooltip

Snap aperture size

Autosnap marker.

Autotrack vector color

AutoSnap tooltip.

Parts of snap markers that can be customized

Most of these options are found near the end of the Display section of the Settings dialog box —
and not the Snap/Grid section!

Settings for snap markers

 3 Changing BricsCAD’s Environment 41

Other snap-related options are found at the start of the Snap Tracking section:

Additional settings for snap markers

Finally, there are aperture options in the Entity Snaps section:

Settings for the aperture

HYPERLINK CURSOR OPTIONS

Entities can contain hyperlinks, which are links to Web sites and other documents. When the cursor
passes over them, a tooltip reports the name of the link. A shortcut menu that displays options use-
ful for working with hyperlinks, which are added with the Hyperlinks command.) The hyperlink
menu and the tooltip are illustrated below:

Left: Hyperlinks options added to right-click menu.

Right: Tooltip reporting hyperlink attached to circle.

SETTINGS AT THE COMMAND LINE

Many times, using the BricsCAD command line is faster than the dialog box. You can avoid opening the Settings dialog
box (and then searching for variable names) by changing values directly at the command prompt: just type the name of
a variable.

For example, I find it faster to change the size of the crosshair cursor by entering the following variable name at the
command prompt, and then changing its value:

: cursorsize
New current value for CURSORSIZE (1 to 100): <3>: 100

42 Customizing BricsCAD V19

The Settings dialog box has the options for hyperlinks near the end of the Display section.

Settings for hyperlinks

DYNAMIC DIMENSION OPTIONS

Dynamic dimensioning shows the lengths and angles of entities as they are being drawn.

Dynamic distance

Dynamic angle

Dynamic dimension color.
Dynamic dimension linetype.

Dynamic dimension distance

Elements of dynamic dimensions

Through the Settings dialog box, you can adjust the look of dynamic dimensions.

Settings for dynamic dimensions

 3 Changing BricsCAD’s Environment 43

Support File Paths

BricsCAD uses a number of folders in which to store support files, such as those needed for fonts,
on-line help, and hatch patterns. BricsCAD locates the support files by consulting “paths” to the
folders. A path specifies the name of the drive and the folder, such as c:\BricsCAD. There are several
reasons why you may want to change the file paths that BricsCAD uses:

•	 Your	firm	has	clients	with	different	standards	for	fonts,	layers,	and	so	on

•	 You	are	a	third-party	developer,	and	need	to	have	paths	pointing	to	sets	of	different	files

•	 You	import	drawings	from	other	CAD	packages,	and	need	to	map	different	sets	of	fonts	via	.fmp files

You are not limited to specifying one single path; you can have BricsCAD search along multiple
paths, including those on networks. Multiple paths are separated by semicolons (;).

Here is how to change paths and file locations:

1.	 Enter	the	Settings	command.

2.	 In	the	Settings	dialog	box,	click	the	Program Options button,	and	then	open	the	Files section.	Notice	that	it	

has	many	sub-sections	for	projects,	plotting,	and	so	on.	See	the	figure.

3. Select	a	path	next	to	a	heading.	For	example,	click	the	field	next	to	Support File Search Path.	

All of the paths to files

4.	 Notice	the	 Browse button.	Click	it.	Notice	that	BricsCAD	displays	the	Folder	List	dialog	box,	which	lets	
you	add,	remove,	and	reorder	multiple	paths.	

Adding and removing paths

44 Customizing BricsCAD V19

The	dialog	box	has	buttons	for	controlling	the	list	of	folder	names:	

Button Name Meaning

 Add Folder Adds a blank entry to the list
 Remove Folder Removes the selected folder from the list . Caution! BricsCAD does not

 ask for deletion confirmation. If you erase a folder by accident, click
 the Cancel button to exit the dialog box with no changes preserved .

 Move Up / Down Moves the selected folder up or down the list

TIP	 BricsCAD	searches	the	paths	by	the	order	in	which	they	are	listed	here.	By	changing	the	order,	
BricsCAD	will	find	files	in	higher-up	folders	sooner.	For	example,	you	might	want	BricsCAD	to	search	fold-
ers	on	your	computer	before	searching	the	network	—	or	the	other	way	around.

5.	 To	add	a	folder,	follow	these	steps:

a.	 Click	the	 	Add Folder button.	Notice	that	a	blank	entry	is	added	to	the	dialog	box.

Blank line added to folders list

b.	 Click	the	 	Browse	button.	In	Windows,	notice	the	Browse	for	Folder	dialog	box.	

	 (In	Linux,	the	Choose	a	Folder	dialog	box	appears.)

Left: Choose a Folder dialog box in Windows; rght: Choose a Folder in Linux

Below: Open a folder in MacOS

 3 Changing BricsCAD’s Environment 45

c.	 You	can	choose	a	folder	on	your	computer,	or	from	a	computer	connected	over	the	network.	Internet	

locations	cannot,	however,	be	chosen.	To	create	a	new	folder,	click	the	New Folder	(or	Create	Folder)	

button,	and	then	give	it	a	name.

d.	 Click	OK sufficient	times	to	exit	dialog	boxes.	Notice	that	the	selected	path	is	added	to	the	list.

6.	 Click	OK	to	exit	the	dialog	boxes.

SUMMARY OF FILES SETTINGS

Here are some details on the paths and support files specified through the Setting dialog box’s Files
section. You can modify all paths, except for ones that are read-only, such as “Local Root Prefix”
and “Menu Name.”

System variable names are shown in small caps; those in blue are specific to BricsCAD; those in
black are found in both BricsCAD and AutoCAD.

Files (and Paths)
Support File Search Path (srchpath) — folders that store fonts, customization, plug-ins, blocks,
linetypes, and hatch patterns. You can specify multiple paths, each separated by a semi-colon.

Save File Path (savefilepath) — path for storing temporary and automatically saved files.

Chapoo Temporary Folder (chapootempfolder) — folder in which Chapoo stores temporary
download files.

Image Cache Folder (imagecachefolder) — folder which stores temporarily cached raster
files.

Local Root Prefix (localrootprefix; read-only, set by Windows) — folder in which BricsCAD
stores support files for the program specific to the local computer.

Roamable Root Prefix (roamablerootprefix; read-only, set by Windows) — folder which stores
support files for the program when the user signs onto other (roamed) computers.

Version Customizable File (versioncustomizablefiles; ready-only, set by Bricsys) — current
version number of CUI and PGP files.

Xref Load Path (xloadpath) — path to temporary copies of demand-loaded xrefs.

Temporary Prefix (tempprefix) — path to the folders in which BricsCAD stores temporary files,
such as automatic backup files (filename.sv$).

Texture Map Path (texturemappath) — path to the folder holding texture map files.

Render Material Directory Path (rendermaterialpath) — path to material files used for ren-
dering.

46 Customizing BricsCAD V19

Render Material Static Directory Path (rendermaterialstaticpath) — path to read-onl mate-
rial files used for previews.

Sheet Set Template Path (sheetsettemplatepath) — path to the folder holding sheetset tem-
plate files.

Alternate Font (fontalt) — font to use when a font cannot be found. Default is the simplex.shx
font file.

Font Mapping File (fontmap) — file that maps fonts. When a font cannot be found, BricsCAD
consults this .fmp file for the name of a matched font; if the matched font cannot be found, it uses
the alternative font specified above.

TIP	 If	unexpected	fonts	appear	for	text	in	a	drawing,	this	means	that	BricsCAD	was	unable	to	find	
the	correct	fonts.	Either	use	the	default.fmp file	to	match	equivalent	fonts,	or	add	the	appropriate	path	to	
the	Fonts path.

Hyperlink Base (hyperlinkbase) — default path for relative hyperlinks in drawings.

Menu Name (menuname; read-only, specified by BricsCAD) — path and name to the menu file

Audit Control (auditctl) — toggles whether the Audit command creates reports in .adt files.

Audit Edit Count (auditerrorcount; read-only, set by BricsCAD) — reports the number of errors
found in the last audit of a drawing file.

Recent Path (recentpath) — most-recent path used to access a file.

Project Paths
Project Search Path (projectname) — paths to the folders in which BricsCAD searches for raster
image files and externally-referenced drawing files.

Project Search Paths (projectsearchpaths) — names of projects and related paths. Click but-
ton to create new project settings.

TIP	 Projects allow	you	to	assign	one	or	more	paths	to	a	drawing	project.

Printer Support Paths and Files
Plot Styles Path (plotstylepath) — path to the folders in which BricsCAD accesses .ctb and .stb
plot style files.

Plotter Configuration Path (plotcfgpath) — path to the folders in which BricsCAD stores .pc3
plot configuration files.

Plot Output Path (plotoutputpath) — path to the folders in which BricsCAD stores plot files.

Print File (printfile) — default name to use plot files; “.” means to use the drawing’s file name.

 3 Changing BricsCAD’s Environment 47

Templates Paths and Files
Template (basefile) — name of the .dwt or .dwg drawing file used to start new drawings upon
starting BricsCAD or when using the New command.

Template Path (templatepath) — path to .dwt template files.

Sheet Set Template Path (sheetsettemplatepath) — path to folder holding sheetset template files.

Default New Sheet Template (defaultnewsheettemplate) — name of the .dwg or .dwt file from
which to create new sheets.

Tool Palettes Path
Tool Palettes Bar State (tpstate; read-only, set by BricsCAD) — reports whether the Tools Palette
is open or closed.

Tool Palettes Path (projectname) — path to the folder holding XTP tool palette definition files.

Dictionaries Section
Custom Spelling Dictionary (dictcust) — path and name of the .cus file used to store words added
by the user during the Spell command. No, it has nothing to do with cussing.

Main Spelling Dictionary (dctmain) — path and name of the .dic file used for checking the spell-
ing of text in drawings.

Log Files Paths and Files
Log File Mode (logfilemode) — toggles the creation of .log files, which record all keystrokes
entered at the command prompt.

Log File Name (logilename;read-only, set by BricsCAD — name of the file with which to record
the command-line text, after the LogFileOn command turns on logging. When this entry is blank,
log files are named after the drawing.

Log File Path (logfilepath) — path to folder that stores log files.

Chapoo Log (chapoolog) — determines whether Chapoo log files are stored.

File Dialogs
Remember Folders (rememberfolders) — default path for file-oriented dialog boxes, such as
Open and Save As. Options are:

	 •	 0	—	Use Start In Path	uses	the	Start	In	path	specified	in	the	Windows	Properties	dialog	box

	 •	 1	—	Use Last Path Used	uses	the	path	stored	in	the	Recent	Path	option

Use Standard Open File Dialog (usestandardopenfiledialog) — toggles the display of path
icons in file-related dialog boxes.

Drawings Path (drawingpath) — path to the folders in which to search for .dwg drawing files.

48 Customizing BricsCAD V19

Blocks Path (blockspath) — path to the folders in which search for .dwg block files.

Thumbnail Preview Image Size (thumbsize) — ranges from 64x64 pixels to 2560x2560.

Preview Window in Open Dialog (previewwndinopendlg) — toggles the display of the preview
image of .dwg files in dialog boxes.

Preview Type (projectname) — view to show in thumbnails:

•	 Last Saved View	of	the	drawing	last	time	it	was	saved

•	 Home View	of	the	drawing	in	its	default	state

Places Bar (Windows only)
First thru Fourth Folder (placebarfolder1 thru placebarfolder4) — specifies the order which
places appear in file-related dialog boxes. Choose from the following places:

PlaceBarFolder Meaning

1 Desktop
2 My Computer
3 My Documents
4 Favorites
5 Network
6 My Recent Documents

Drawings Path (drawingpath) — lists additional folders for Open and SaveAs commands.

Reusing User Preferences

After you customize BricsCAD through the instructions given by this book, you can save the changes
to .arg files. You can makes changes to how BricsCAD looks and works, and save them, and then
reuse them later.

For example, here are some reasons why you might want to create .arg files:

 Projects. It	may	be	necessary	to	customize	BricsCAD	for	specific	projects.	Through	.arg	files,	you	can	Brics-

CAD	to	look	in	project-specific	folders,	use	specified	plot	settings,	and	so	on.

 Portability. Through	.arg	files,	you	can	make	any	copy	of	BricsCAD	your	own.	Import	the	.arg	file	into	the	CAD	

program	running	on	another	computer,	activate	it,	and	when	BricsCAD	restarts,	it	will	look	just	like	your	own.	

In	this	case,	you	might	be	setting	the	size	of	the	cursor	and	colors	of	user	interface	elements,	such	as	the	

background	color	of	the	screen.

The .arg file stores settings in the following areas of BricsCAD:

•	 All	settings	that	are	reported	by	the	Settings	dialog

•	 All	settings	that	are	stored	in	the	Windows	registry	

•	 Plotter	settings	used	for	model	space

•	 Settings	made	in	dialog	boxes

•	 Project	settings

•	 Recent	paths

 3 Changing BricsCAD’s Environment 49

•	 Status	bar	settings

•	 Tip	of	the	Day	setting

•	 Toolbar	settings

To make it easier to work with .arg files, BricsCAD includes the User Profile Manager utility pro-
gram. It displays a dialog box that lets you save and recall settings. More importantly, the dialog
box’s Start button launches BricsCAD with the selected user profile. (This is like using the /p switch
discussed earlier.)

TIP	 The	.arg file	format	used	by	BricsCAD	is	compatible	with	AutoCAD.	This	means	you	can	swap	
user	profiles	between	AutoCAD	and	BricsCAD.

LAUNCHING THE USER PROFILE MANAGER

You launch the manager from inside or outside BricsCAD:

•	 Inside	BricsCAD	through	Tools | User Profile Manager,	or	enter	the	ProfileManager	command.

•	 Outside	BricsCAD	through	the	Windows	Start button:	All Programs | Bricsys | User Profile Manager.	(This	

option	is	not	available	on	Linux	or	Mac.)

Notice the dialog box that appears. On the right is a column of buttons for creating and editing user
profile names. The buttons have the following meaning:

 Create... creates	new	profiles,	prompting	you	for	a	name.	It	uses	the	current	settings	found	in	BricsCAD.

 Set Current sets	the	selected	profile	as	the	current	one.	The	next	time	BricsCAD	starts,	it	will	use	this	profile.

 Copy... makes	a	copy	of	a	selected	profile.

User Profile Manager is an external program

 Delete removes	the	profile.	(In-use	profiles	cannot	be	erased.)

 Export... exports	the	selected	profile	as	an	.arg file.

 Import... imports	.arg	files	in	to	this	copy	of	BricsCAD.

 Start launches	BricsCAD	with	the	selected	user	profile.

 OK closes	the	dialog	box.

To rename a profile, right click its name, and then choose Rename from the shortcut menu.

There is one more button: clicking Bricsys opens the BricsCAD Web site in your computer’s default
Web browser.

50 Customizing BricsCAD V19

Using the Profile Manager
To use the user profile manager, follow these steps:

1.	 Make	changes	to	BricsCAD,	such	as	in	the	Setting	dialog	box	or	in	the	Plot	dialog	box.

2.	 From	the	Tools	menu,	choose	User Profile Manager.

3.	 In	the	User	Profile	Manager	dialog	box,	follow	these	steps:

a.	 Click	Create to	create	a	new	profile.	Notice	the	Create	Profile	dialog	box:

Naming the new profile

b.	 Enter	a	name	and	description	of	the	profile.	It	is	a	good	idea	to	list	the	specifics	of	the	profile	in	the	

Description	field,	because	that	is	the	only	way	you	will	be	able	to	determine	what	is	in	this	profile.

	 c.	 Click	OK.

4.		 With	the	profile	saved,	you	now	have	two	primary	options:

•	 Launch	another	copy	of	BricsCAD	with	the	new	profile	—	click	Start.

•	 Simply	exit	the	dialog	box	—	click	OK.

TIP	 You	can	create	multiple	desktop	icons	for	BricsCAD,	each	associated	with	a	different	user	pro-

file.	Use	the	/p	argument,	as	described	earlier	under	“Command	Line	Switches.”

Adapting the
User Interface

To You

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Accessing commands in the drawing tabs

• How to modify the LookFrom widget

• Taking full advantage of the command bar

• Repositioning the ribbon

Some of BricsCAD’s customization fall outside the realm of the Settings and Customization
dialog boxes, as described in other chapters of this book. Some aspects of the user interface can be
changed directly in the interface, instead indirectly through a dialog box.

In this chapter, you learn how to directly change the looks of drawing tabs, LookFrom widget, rib-
bon, and command bar.

CHAPTER 4

52 Customizing BricsCAD V19

Customizing the Command Line

The command line is the primary way in which BricsCAD communicates with you, and where you
enter the names of commands and their options. It is found along the bottom of the BricsCAD win-
dow, usually, but doesn’t need to be there or even look the way it does.

For instance, you can make the text look like this. Here I changed the font to Bauhaus and the size
to 24 points (1/3" tall).

Command bar with different font and font size

In this section you learn how to customize the command line (a.k.a. “command bar” or “panel”).

Command bar’s default location at the bottom of the BricsCAD window

These are the parts to the command bar, and the controls that are embedded in it:

Command historyClick to close
command bar

Drag to move
command bar

Enter your
response here

Prompts from
BricsCAD

Scroll through earlier
command history

Parts of the command bar

RESIZING AND HIDING THE COMMAND LINE

The command bar typically displays three or four lines of history, which is the text of previously
displayed prompts. When you need to see more lines of history, then you have these choices:

•	 Drag	the	bar’s	top	border	to	stretch	it	taller	or	shorter.	For	the	exact	location	to	do	this,	see	the	double-end-

ed	arrow	cursor	shown	below.

Resizing the command bar

 4 Adapting the User Interface to You 53

•	 Drag	the	bar	away	from	its	docked	position,	and	then	resize	it,	as	shown	below.

Floating command line dragged away from its docked position

You can turn off the Command bar with the CommandLineHide command, but I don’t recommend
this; there is no good reason to do so — the BIM workspace does this, and I find it unhelpful! The
CommandLine command turns it back on. You can use the Ctrl+9 (Cmd+9 on Macs) shortcut
keystroke to toggle its visibility.

When the command line is turned off, it still displays the command history in the drawing area. It
looks like this:

Prompts scrolling into the drawing area

As well, the current prompt is displayed on the status bar. After a few moments, the history fades
from view.

(new in v19) To change the number of lines of history appearing in the drawing area, enter the
CliPromptLine variable and then change its value. Here are the valid values:

CliPrompLine Meaning

0 Turns off the prompt history
1 Minimum number of lines
4 Default number of lines of prompt history
64 Maximum number

Related System Variables
The command line can be made to present different kinds of information. The easiest way to do
this is by right-clicking the command line:

Shortcut menu presenting command line options

54 Customizing BricsCAD V19

The options are related to the following variables:

AutoComplete. The AutoCompleteMode variable controls the actions of the pop-up menu that
displays a list of command and variable names that begin with the same letter(s) — auto-complete
mode. Illustrated below is what happens when users type an “a”: they can then select one of the
names or aliases from the list, and then BricsCAD executes the command or variable.

Autocomplete entries for ‘a’

The default value of this variable is 15, which is the sum of 1+2+4+8, representing the options that
are turned on by default. When set to 0, auto-complete is turned off.

AutoCompleteMode Meaning

0 Disabled
1 Enable auto-complete (default)
2 Auto-append names (default)
4 Display names that begin with the same letter(s) (default)
8 Display icons (unsupported; default)
16 Exclude the display of system variables
32 Display preference variables found only in BricsCAD

While the display of icons seems to be an option, BricsCAD does not do this at the time of writing.
The value (8) is included for compatibility, so that routines imported from other DWG editors will
work smoothly.

Delay Time. The AutoCompleteDelay variable specifies how long BricsCAD should wait before
displaying the auto-complete list. The time is measured in seconds.

AutoCompleteDelay Meaning

0 Minimum value; no delay
0 .3 Default value; brief delay
10 Maximum value; long delay

Copy copies the selected text from the command line to the Clipboard. Some text has to be selected
for this command to become available.

Clear erases all text from the command line, including the history. BricsCAD asks if you are sure:

Checking if you really want to erase the command history

 4 Adapting the User Interface to You 55

Select All selects all text in the command line, including the history. The history consists of all
previous command entries. By default, the program retains 256 lines of history; you can change
this number to be larger or smaller with the ScrlHist variable.

Paste pastes text from the clipboard into the command line. This option appears only when the
cursor is next to the ‘:’ prompt. You can paste text previously copied to the Clipboard with the Copy
option, as well as text from other programs formatted to follow the format of scripts (see Chapter
20) and LISP routines (see Chapter 21).

Options displays the Command Line section of the Settings dialog box.

Command Line section of the Settings dialog box

Many of the settings shown in the figure above are discussed next.

TIP	 To	record	the	command	history	in	a	file,	use	the	LogFileOn	command	to	begin	saving	it,	and	
then	use	LogFileOff	to	turn	off	the	recording.		
	
Use	the	LogFileName	to	specify	a	different	name	for	the	.log	file	(the	default	is	the	name	of	the	drawing),	
and	LogFilePath	to	change	the	folder	in	which	the	file	is	stored	(the	default	is	C:\Users\<login>\AppData\Lo-
cal\Bricsys\BricsCAD\V19x64\en_US.	
	
The	log	file	system	is	independent	of	the	ScrlHistory	variable’s	limit	on	lines,	and	will	keep	recording	every-
thing	until	you	turn	it	off.	

ADDITIONAL COMMAND LINE VARIABLES

You change the look of the command line and its Prompt History cousin through variables in the
Settings dialog box.

Command line font name. The CmdLineFontName variable specifies the font used by the com-
mand line and Prompt History window. Any TrueType font can be used.

CmdLineFontName Meaning

Consolas Default font name

56 Customizing BricsCAD V19

To change the font displayed by the command line and text window, click the field, and then choose
a font from the droplist.

Selecting a font for the command line

Command Line Font Size. The CmdLineFontSize variable sets the size of the text in the command
bar and Prompt History window. I would like it I could set different font sizes for the command line
(smaller) and Prompt History window (larger), but this is not possible.

TIP	 To	display	the	Prompt	History	window,	press	F2.

Command Line List Background Color. The CmdLineListBgColor variable specifies the back-
ground color of the history window. The default is 250,250,250 — a light gray.

(Earlier releases of BricsCAD used hexadecimal numbers to assign colors to these variables. Hexa-
decimal numbers are natural to computer systems, are base 16, and are signaled by the # prefix,
such as #fe00ee.)

The numbers specify levels of red, green, and blue. The numbers indicate the strength of each
component color. it ranges from 0 (black, no color) to 255 as the maximum strength for a color.

CmdLineEditBgColor Meaning

0,0,0 Black
255,0,0 Red
0,255,0 Green
0,0,255 Blue
250,250,250 Light gray (default value)
255,255,255 White

To change the color, click the field in the Settings dialog box. Notice the Browse button.

Clicking the Browse button

 4 Adapting the User Interface to You 57

Clicking the Browse button displays the Color dialog box. Choose a color, and then click OK.

Selecting a color

Command Line List Foreground Color. The CmdLineListFgColor variable specifies the foreground
color of the history window. By “foreground,” BricsCAD means the color of the text. The default is
64,64,64 — a very, very dark blue.

Command Line Edit Background Color. The CmdLineEditBgColor variable specifies the back-
ground color of the command bar. The default is 250,250,250, a light gray.

Command Line Edit Foreground Color. The CmdLineEditFgColor variable sets the foreground
color of the command line panel. The default is 32,32,32.

Command Line State. The ClsState (read-only) variable reports whether the command bar is
open, or not. Because it is a read-only variable, users cannot change it.

ClsState Meaning

0 Command bar is hidden
1 Command bar is visible (default)

Use Ctrl+9 (Cmd+9 on MacOS) to quickly turn the command line on and off.

When the command bar is off, the last four lines of command text appear in the drawing area. After
about five seconds, the text fades away. When you next enter a command or pick an option, the
on-screen text reappears. This works whether clean screen is on or off.

Command line text in the drawing area

58 Customizing BricsCAD V19

Prompt Prefix. The CmdLnText variable specifies the prompt character(s) displayed by the com-
mand bar. While the default is a colon (:), BricsCAD allows you to change it to something else, such
as AutoCAD’s traditional prompt, ‘Command:’.

CmdLnText Meaning

: Prompt text displayed by command bar

Scroll History. The ScrlHist variable determines how many lines of command history BricsCAD
remembers. This affects both the command line and the Prompt History window.

ScrlHist Meaning

0 No history is kept
256 Default value
2147483647 Maximum value

Even More Command Line Variables
There are additional variables located elsewhere in the Settings dialog box:

(new in V19) CliPromptLines variables determines how many lines of command history appear
in the drawing area when the Command panel is turned off.

LastPrompt variable reports the name of the command entered most recently. It is read-only.

PromptOptionFormat variable determines how command options are displayed on the command
line and in the prompt menu; option 4 is meant for international versions of the software:

PromptOptionFormat Meaning

 0 (default) Show description only
 Set end of arc or [draw Lines/Angle/CEnter/CLose/ . . .
 1 Show keywords only
 Set end of arc or [Line/Angle/CEnter/CLose/ . . .
 2 Show description, with keywords in brackets
 Set end of arc or [Draw lines(Line)/Angle/Center(CEnter)/Close(CLose)/ . . .
 3 Show description, with shortcuts in brackets
 Set end of arc or [Draw lines(L)/Angle/Center(CE)/Close(CL)/ . . .
 4 Show local keyword, with global keyword in brackets

PromptOptionTranslateKeywords variable toggles the use of international commands. When
off, the underscore (_) prefix is not needed during command input; default = on.

TIP	 To	change	the	color	of	the	drawing	area,	use	the	

 4 Adapting the User Interface to You 59

Customizing the Ribbon

The ribbon is kind of like a series of overlapping toolbars, where of a series of tabs segregate the
“toolbars” into groups of functions. Each tab is further segregated into a series of panels, and then
each panel contains a group of buttons, flyouts, and droplists — just like toolbars.

Ribbon displayed by the 2D Drafting workspace

Because Bricsys wrote its own version of the ribbon interface, it is equally available on the Windows,
MacOS, and Linux versions — unlike all other CAD systems. You customize the ribbon through the
Customize command. See Chapter 9 and 14.

(See Chapter 9 for tutorials on creating and editing ribbon tabs and panels with the Customize
command. The chapter also includes a complete panel design reference.)

When no drawing is open, all buttons on the ribbon turn gray, to indicate that they are unavailable.
The blue File item is not part of the ribbon, but is a menu that lets you open and save drawings,
and so on.

Ribbon buttons grayed out when no drawing is open

BricsCAD comes with several ribbons, but to switch between them, you don't use the Ribbon com-
mand, as you might think. Instead, you use the Workspaces command. Ironically, a Workspaces
droplist is not available on the ribbon, by default.

HANDLING THE RIBBON

The Ribbon turns on the display of the ribbon; RibbonClose closes it.

You can drag the ribbon away from its docked position; the floating ribbon looks like this:

Floating ribbon

60 Customizing BricsCAD V19

While it is possible to float the ribbon, I find no useful purpose to it.

To switch between ribbons, you can change the workspace using a toolbar, status bar, or the com-
mand line, as follows:

•	 Workspaces droplist	on	a	toolbar:

Choosing a workspace from the toolbar

•	 Workspaces button	on	the	status	bar:

Choosing a workspace from the status bar

•	 Workspace command	in	the	command	bar:
 : workspace
 Workspace: setCurrent/SAveas/Rename/Delete/SEttings/? <setCurrent>: ?

 Workspace Name

 BIM
 Drafting
 Drafting (toolbars)
 Mechanical
 Modeling

(new in V19) The names of workspaces changed with BricsCAD V19:

Old Workspace Name New Workspace Name Default Display

2D Drafting Drafting Displays the ribbon
 . . . Drafting (Toolbars) Displays the menu bar and toolbars, no ribbon
3D Modeling Modeling Displays the menu bar and toolbars, no ribbon
BIM BIM Has a new ribbon style for V19; see below
Mechanical Mechanical Displays the ribbon
Sheet Metal . . . Removed from V19

The ribbon for the BIM workspace looks quite different from other ones, as it was . copied from
Bricsys’ free Sketch program.

BIM ribbon sporting a toolbar look

Related System Variables
RibbonState (read-only) variable reports whether the ribbon palette is open or closed. Users can-
not change this variable, because it is read-only.

RibbonState Meaning

0 Ribbon is closed
1 Open

 4 Adapting the User Interface to You 61

RibbonDockedHeight variable determines the height of the ribbon when docked. The height is
measured in pixels. I recommend that you do not change this number.

RibbonState Meaning

0 Ribbon sizes itself to the height of the selected tab
120 Default value
500 Maximum value

Customizing Drawing Tabs

Drawing tabs let you switch quickly between open drawings. BricsCAD calls them “document tabs.”

Each tab names the drawing

As well, they provide a shortcut to file-related commands, such as Open and Close, plus some com-
mands you won’t find elsewhere in BricsCAD. To access these commands, right-click any drawing tab:

Shortcut menu of commands for controlling tabs and drawings

Most of these commands will be familiar to you, like Close and Open. There are some, however, that
are unique, such as Open Folder, which I find particularly useful.

 Ð Close Left Tabs — closes all drawings to the left of this tab. This is useful for closing older drawings. Drawings
that were opened earlier tend to appear at the left end of the row of tabs

 Ð Close All But This — closes all other drawings, except the current one. I find this useful when I open an entire
folder’s worth of drawings, and then want to keep just one open

 Ð Save All — saves all drawings at once

 Ð Duplicate Tab — makes a copy of the current drawing, and then names it copy_name.dwg

 Ð Open Folder — opens the folder from which the drawing was opened

62 Customizing BricsCAD V19

Related System Variables
The look of drawing tabs is customized through variables. Be aware that the changes made to these
variables do not take effect until the next time BricsCAD is started. So to apply the change(s), exit
BricsCAD, and then start it again.

DocTabPosition variable — places the tabs at the top, bottom, left, or right of the drawing area.
DocTabPosition Meaning

0 Position tabs at the top of the drawing area (default)
1 Position tabs at the bottom of the drawing area
2 Position tabs at the left edge of the drawing area
3 Position tabs at the right edge of the drawing area

The ShowDocTabs variable turns the tab row on and off.
ShowDocTabs Meaning

0 Does not display tabs
1 Displays tabs (default)

You can also access these variables in the Settings dialog box.

Customizing the Look From Control

BricsCAD has a LookFrom widget in the upper right corner of the drawing area. I find it very useful
for quickly changing the 3D viewpoint.

LookFrom widget at rest

Click on one of the triangles to see a 3D model from a different point of view:

Viewing a 3D model from an isometric viewpoint

Here is how to use it:

 4 Adapting the User Interface to You 63

1.	 Pass	the	cursor	over	the	widget.	Notice	that	small	triangles	appear,	as	does	the	preview	image	of	a	simple	

chair	appears.

Cursor activating the LookFrom widget

2.	 Pause	the	cursor	over	a	triangle:

•	 You	get	a	preview	of	what	the	3D	view	will	look	like	via	the	chair	icon

•	 A	tooltip	tells	you	name	of	the	view,	such	as	“Top	Front	Left:

•	 The	green	dot	indicates	the	cursor	position,	kind	of	like	a	laser	pointer.

3.	 Click	the	triangle	to	change	the	3D	viewpoint.	

TIPS	 	To	see	the	bottom	views:	hold	down	the	Ctrl	(or	Cmd	in	Mac)	key	while	the	cursor	is	in	the	
LookFrom	widget.		
	
To	return	to	the	home	(default)	view:	click	the	center	of	the	LookFrom	control.	(This	is	particularly	helpful	
in	Twist	mode.)	Or,	press	the	Home	key	on	the	keyboard	to	return	to	the	home	view.

There are two ways to customize the way the LookFrom control operates. The easier one is right-
click the control, and then choose an option from the shortcut menu:

Shortcut menu of LookFrom options

Most of the options in the shortcut menu are straight-forward, but I do want to explain the differ-
ence between Isometric and Twist modes:

 Ð Isometric mode is like using the Viewpoint or View commands; clicking a triangle jumps to the viewpoint

LookFrom widget in isometric mode

 Ð Twist mode is like using the RtRotF (real time view rotation) command; clicking an arrow rotates the viewpoint

LookFrom widget in view rotation mode

64 Customizing BricsCAD V19

LOOKFROM COMMAND

The other way to customize the widget is through the LookFrom command, from which you can
turn the widget off (and on) and access its settings:
: lookfrom
LookFrom [ON/OFf/Settings] <ON>: (Enter an option)

The ON and OFf options turn the widget on and off.

The Settings option opens the Settings dialog box at the LookFrom section.

LookFrom variables in the Settings dialog box

With Settings, you can adjust properties of the widget, such as its translucency and position.

Of particular interest is the number of isometric viewpoints it can display, which is set through
“Direction Mode” or the LookFromDirectionMode variable. The following table illustrates these
modes:

LookFromDirectionMode Number of Views

0 6 orthogonal views

1 14 views; no flat views of corners (default)

2 18 views; top down corners

3 26 views; eight top down corners

Related System Variables
The following variables control the look and action of the LookFrom widget. Some of the names
begin with “NavVCube.” This is AutoCAD’s name for its “navigation view cube” widget.

The LookFromFeedback variable toggles the feedback display between tooltips and the status bar:

LookFromFeedback Meaning

0 No feedback
1 Tooltips near the LookFrom widget (default)
2 On the status bar

 4 Adapting the User Interface to You 65

The LookFromDirectionMode variable selects the type of display, as illustrated above.

The LookFromZoomExtents variable toggles the use of Zoom Extents when a viewpoint changes:

LookFromZoomExtents Meaning

0 Zoom is unchanged
1 Zoom extents is executed when the view direction changes (default)

The NavVCubeDisplay variable toggles the display of the LookFrom widget:

NavVCubeDisplay Meaning

0 Not displayed
1 Displayed (default)

The NavVCubeLocation variable positions the widget in one of the four corners of the drawing area:

NavVCubeLocation Meaning

0 Top right corner of the drawing area (default)
1 Top left corner
2 Bottom left corner
3 Bottom right corner

The NavVCubeOpacity variable determines the “see through-ness” of the widget:

NavVCubeOpacity Meaning

0 Invisible
50 Semi-transparent (default value)
100 Opaque

The NavVCubeOrient variable determines whether view changes are relative to the world coor-
dinate system or the current user-defined coordinate system:

NavVCubeOrient Meaning

0 Relative to WCS (default)
1 Relative to UCS

66 Customizing BricsCAD V19

Maximizing the Drawing Area

To maximize the screen means to minimize the number of user interface elements. Use the
CleanScreenOn command to maximize the drawing area, CleanScreenOff to return the UI to
normal. Pressing Ctrl+0 (Cmd+0 on MacOS) does the same thing much more quickly.

BricsCAD’s drawing area maximized

The CleanScreenOptions variable specifies which UI elements to keep on during clean screen
mode. The default value is 15, which means the drawing tabs, panels, toolbars, and ribbon are hid-
den, while the command line, status bar, and menu bar remain visible.

CleanScreenOptions Meaning

0 Hide no elements
1 (default) Hide document (drawing) tabs
2 (default) Hide dockable panels (palettes)
4 (default) Hide toolbars
8 (default) Hide ribbon
16 Hide command line panel (bar)
32 Hide status bar
64 Hide menu bar

 4 Adapting the User Interface to You 67

USING MULTIPLE MONITORS

Most computers, even today’s laptops, support two or three monitors. I find it useful to place all
palettes and bars on the second monitor. This maximizes the area available for the BricsCAD draw-
ing screen.

Indeed, when I write these books, I have five screens surrounding me. My Windows 7 workstation
has three:

 Ð Main monitor (2048x1152 resolution) for the InDesign desktop publishing software

 Ð Second monitor (1360x768) for InDesign’s many palettes and PaintShop Pro for editing figures

 Ð Third monitor (1920x1080) for displaying BricsCAD

I find it beneficial to have the secondary monitor run at a lower resolution, because it makes the
user interface larger and so easier to read.

To check how BricsCAD works with Windows 10, I have a separate laptop running that operating
system.

Three monitors at different resolutions

Because BricsCAD also runs on Linux and MacOS, I have the cheapest Mac mini connected to a
separate 1920x1080 monitor. The Mac runs the VM Virtual Box software from Oracle (free from
https://www.virtualbox.org) which handles the Mint Linux operating system (download free from
https://www.linuxmint.com/download.php).

In the figure below, the “linuxmint” window is running on the Mac desktop.

Mac running MacOS natively and Linux in a virtual machine window

68 Customizing BricsCAD V19

When I make screen grabs on them or the Mac-Linux system using WinSnap, Dropbox captures the
images automatically, and then places them in a folder on my Windows 7 computer for placement
in the InDesign document.

Sharing data, like screen grabs, through Dropbox

TIP	 Even	if	your	computer’s	graphics	board	is	limited	to	working	with	one	(or	two)	monitors,	there	
is	a	workaround.	DisplayLink	is	a	USB	dongle	that	allows	you	to	add	a	monitor	without	needing	a	video	
port.	Windows	sees	the	dongle	as	another	screen.		
	
Several	manufacturers	make	the	hardware	for	under	$100;	see	http://www.displaylink.com.	Software	is	
included	that	runs	on	the	computer	to	redirect	the	“second	screen”	graphics	to	the	dongle.	

Customizing Other UI Elements

To customize the look of other user interface elements, see the following chapters:

To change the look of . . . See Chapter . . .

Menus 6
Toolbars 7
Quad cursor 12
Rollover tooltips 13
Palettes 15

Working with the
Customize Dialog Box

PART II

Notes

Introduction to the
Customize Dialog Box

The Customize dialog box is the primary place to customize BricsCAD. This dialog box handles
many tasks, including the following:

 Ð Making and changing toolbars, menus, shortcut menus, mouse and digitizer buttons, ribbon tabs and panels,
workspaces, Quad cursor, rollover properties, and tablet menus

 Ð Writing and editing macros

 Ð Creating and modifying keyboard shortcuts, command aliases, and shell commands

 Ð Importing and exporting full and partial menu files in .cui , .cuix, .icm, .mns, and .mnu formats

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Touring the Customize dialog box

• Understanding the CUIX customization file

• (new in V19) Accepting and rejecting changes to customization

• Reviewing the XML format

• Working with partial CUI files

CHAPTER 5

72 Customizing BricsCAD V19

The Customize dialog box is your one-stop shop for customizing menus, ribbons, toolbars, shortcut
menus, macros, keyboard shortcuts, buttons, command aliases, workspaces, Quad cursor, rollover
properties, and shell commands.

These are some of the ways to access this important dialog box:

 Ð Enter Customize at the command prompt

 Ð Or, enter the alias cui (this is my preferred method)

 Ð Or, from the Tools menu, select Customize

 Ð Or, right-click any toolbar or ribbon, and then from the shortcut menu select Customize

This chapter introduces the Customize dialog box, and so provides an overview of its functions.
Each of the nine chapters following describe in turn how to customize the user interface indicated
by the tab name — Menus, Toolbars, Ribbon, and so on.

Tabs segregating customization of interfaces elements

The chapters follow roughly in order of how the customizations appear in the dialog box:

Tab Name(s) Chapter Topic

Menus 6 Menus and context menus
Toolbars 7 Toolbars
applies to most tabs * 8 Macros and diesel code
Ribbon 9 Ribbon tabs and panels
Keyboard 10 Keyboard shortcuts

Mouse 11 Mouse buttons, double-click actions . . .
Tablet 11 . . .and tablet menu

Quad 12
Properties 13 Rollover properties
Workspaces 14 Workspaces

Command Aliases 10 Aliases . . .
Shell Commands 10 . . .and shell commands

*) Macros and Diesel are used by menus, toolbars, ribbon, mouse, tablet, and Quad

BricsCAD stores information about menus, toolbars, and so on in .cui files, where “cui” is short for
customize user interface. The CAD program also reads new menu files from AutoCAD (.cuix), older
menu files (.mnu and .mns), and IntelliCAD (.icm). Aliases and shell commands are stored in a dif-
ferent format, .pgp files.

 5 Introduction to the Customize Dialog Box 73

Touring the Customize Dialog Box

The Customize dialog box has three primary areas (a.k.a. panes): customize, tools, and properties.

Customize dialog box

 Ð Customize pane (on the left) lists items that can be customized; the content of this pane varies, depending on
which tab is selected, whether “Menu” or “Shell Commands”

Customize pane, found in the left half of the dialog box

 Ð Tools pane (on the right) lists all of the commands found in BricsCAD; they are sorted according to menu
order, for example, all file-related commands are listed under “File”

Tools pane, found in the right half of the dialog box

 Ð Properties pane (at the bottom) edits the properties, such as title, Diesel code, Help text, command macro, and
image associated with the currently-selected item; the content of this pane varies, depending on the tab and item

Properties pane, found at the bottom of the dialog box

74 Customizing BricsCAD V19

ABOUT CUI FILES

Default.cui is the name of the file that defines the menus and toolbars of BricsCAD. It was developed by Autodesk, which
then switched to CUIX. The “X” indicates CUIX is a zipped package file that holds all the files needed by the user inter-
face including icons. (It can be viewed with software like PkZIP or 7-Zip.)

CUI files are written in XML, which is short for eXtended Markup Language. XML is a file format that is an extension of
HTML, the hyper text markup language used for Web pages. The format is in ASCII, and looks just like HTML, but uses
custom tags. Custom tags are used to identify the data stored in CUI files. For example, <Macro> identifies the start
of a macro, while <\Macro> marks its end. Because it is like HTML , you can use any Web browser to parse CUI files.
Because the format is written in plain text (as shown below), and because the XML specification requires that every
piece of data be identified, CUI files are human-readable. Well, in theory; in practice, it quickly becomes tedious trying
to read the content of CUI files, because of the repetitive nature of tags.

Bellow you see the first part of BricsCAD’s default.cui file as written in XML format. This is the first of several dozen
lines of a file that’s 343 pages long in BricsCAD V19. I’ve boldfaced some of the macro-related items to help them stand
out from the XML tags.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<CustSection xml:lang="en-US">
 <FileVersion IncrementalVersion="2" MajorVersion="0" MinorVersion="3" UserVersion="0"/>
 <Header>
 <CommonConfiguration>
 <CommonItems>
 <PartialMenuFile>C:\Users\rhg\Desktop\partial.cui</PartialMenuFile>
 </CommonItems>
 </CommonConfiguration>
 <WorkspaceRoot>
 <WorkspaceConfigRoot/>
 </WorkspaceRoot>
 </Header>

 <MenuGroup Name="BRICSCAD">
 <MacroGroup Name="File">
 <MenuMacro UID="qnew">
 <Macro>
 <Name>QNew</Name>
 <Command>^c^c_qnew</Command>
 <HelpString>Creates a new drawing from the current default template</HelpString>
 <Image ID="qnew"/>
 </Macro>
 </MenuMacro>

 <MenuMacro UID="new">
 <Macro>
 <Name>New...</Name>
 <Command>^c^c_new</Command>
 <HelpString>Creates a new drawing</HelpString>
 <Image ID=”new”/>
 </Macro>
 </MenuMacro>

 <MenuMacro UID=”newwiz”>
 <Macro>
 <Name>New Wizard...</Name>
 <Command>^c^c_newwiz</Command>
 <HelpString>Creates a new drawing using ‘Create New Drawing’ wizard</HelpString>
 <Image ID=”newwiz”/>
 </Macro>
 </MenuMacro>

et cetera...

 5 Introduction to the Customize Dialog Box 75

For the remainder of this chapter, I’ll describe the parts of the Customize dialog box common to
all areas. I begin at the top, and then work my way to the bottom of the dialog box. Later chapters
describe unique content.

CUSTOMIZE’S MENU BAR

The top of the dialog box sports a menu bar with a single, lonely-looking menu item. The File menu
lets you open and save full and partial .cui files.

The lonely File menu on the menu bar

Click File to view the menu:

Options displayed by the File menu

Here are the task the menu items perform:

Load Main CUI File	opens	a	.cui,	.cuix,	.mnu,	or	.icm file:	

FIle Type Meaning

.cui Format in which BricsCAD stores customizations;
 also used by older releases of AutoCAD
.cuix Format in which AutoCAD currently stores customizations;
 “x” refers to an archive file, which includes CUI, image files, and so on
.mnu Format in which the oldest releases of AutoCAD stored customization;
 also used by many AutoCAD work-alike programs

 .icm Format in which IntelliCAD originally stored customizations

Warning		 A	new	Main	Cui	file	completely	replaces	the	current	one,	thereby	replacing	all	existing	menus,	
toolbars,	shortcut	menus,	and	so	on.

ABOUT MAIN AND PARTIAL CUSTOMIZATION

The difference between “Main” and “Partial” customization files is subtle, but crucial:

Main file covers all the user interface elements governed by the Customize dialog box. Change the Main file and the
entire user interface changes — except for the portions defined by the Partial files, if any are loaded.

Partial file is like an appendix, an independent addition. Change the Partial file, and only the parts it defines are changed;
the rest of the user interface is unaffected. Partial files are used by third-party add-ons (and you!) for customizing the
CAD program.

BricsCAD must have a Main file loaded for the user interface to exist; no Partial files need be loaded.

76 Customizing BricsCAD V19

 Save Main CUI File saves	the	current	.cui file	by	another	name.	

TIP	 You	don’t	need	to	use	this	Save	option	to	save	changes	to	customization,	because	BricsCAD	
saves	them	automatically	when	you	click	OK	to	exit	the	dialog	box.

 Load Partial CUI File	opens	a	partial	.cui file.	The	difference	between	a	main	and	a	partial	file	is	that	the	con-

tents	of	a	partial	.cui file	are	added	to	the	existing	user	interface.	This	option	is	useful	for	adding	menus	and	

toolbars	that	were	customized	for	add-on	applications.

 Create New Partial CUI File	creates	a	(nearly)	empty	.cui file.	Its	sparse	content	is	shown	below:	

 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>
 <CustSection xml:lang="en-US">
 <MenuGroup Name="DEFAULT"/>
 </CustSection>

	 (I	would	rather	that	this	command	creates	a	partial	file	of	the	selected	item,	such	as	a	toolbar	or	a	menu.	The	

workaround	is	to	copy	and	paste	the	items	I	want	into	the	file.	This	is	not,	however,	a	great	solution,	consid-

ering	the	complexity	of		the	CUI	format.)

	 Import Workspaces	—	imports	workspace	info	from	.cui	files.

TIP	 BricsCAD	can	import	menu	files	from	other	CAD	systems,	such	.cuix	from	recent	releases	of	
AutoCAD,		.mnu	from	older	AutoCAD	systems, and	IntelliCAD’s	.icm files.		
	
These	are	imported	through	the File | Load Main CUI File	option.	In	the Files of Type	droplist,	choose	the	
other	format,	as	illustrated	below.	
	

	 	

CUI Customization Files
As BricsCAD store customizations in .cui files, it shows the name of the current one in the filed next
to Main Customization File:

Location of the primary customization file in Windows

This single default.cui file contains everything to do with menus, shortcut menus, toolbars, buttons,
tablets, Quad cursor, ribbon, and keyboard shortcuts— except for aliases and shell commands,
which are saved in a separate default.pgp file. Both of these files can be exchanged with other CAD
programs that read them, such as AutoCAD.

The Browse button (at the end of the Main Customization File field) lets you load a different
.cui file. You want to do this when you need to quickly change the user interface of BricsCAD.

 5 Introduction to the Customize Dialog Box 77

Here is how to do this:

1.	 Click	the	 button.
2.	 Choose	a	.cui,	.cuix,	.mnu,	or	.icm	file	from	the	Select	a	CUI	File	dialog	box.	

Selecting another user interface by opening another .cui file

3.	 Click	Open.	Notice	that	all	of	the	user	interface	of	BricsCAD	changes	immediately!

Aliases and shell command definitions are stored in a different file, called default.pgp. “PGP is short
for program parameters, but rumor has it that it was nicknamed the “pigpen” file. Click the “Com-
mand Aliases” or “Shell Commands” tab to see the location of the .pgp file:

Path to the default.pgp file

In Windows, the default.cui files are found in these folders:

 Original files		 	 C:\Program Files\Bricsys\BricsCAD V19 en_US\UserDataCache\Support\en_US

 Working copy		 C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\Support

The “original files” are the ones BricsCAD uses when you use the Windows Repair facility, as well as
when you click the Revert to Defaults button. The “working copies” are the ones that get modified
when you make changes using the Customize dialog box.

In Linux, the default.cui files are located in these folders:

 Original file		 	 /opt/bricsys/bricscad/V19/UserDataCache/Support/en_US

 Working copy /home/<login>/Bricsys/BricsCAD/V19x64/en_US/Support

In MacOS, the default.cui files are stored in these folders:

 Original file		 	 /Applications/BricsCAD V19.app/Contents/MacOS/UserDataCache/Support/en_US

 Working copy /Users/<login>/Library/Preferences/Bricsys/BricsCAD/V19x64/en_US/support

78 Customizing BricsCAD V19

The default.cui file has a different name on MacOS and Linux systems:

default(windows).cui 	

default(linux).cui	

default(mac).cui	

SEARCH FOR COMMANDS

BricsCAD has hundreds of commands, but they are not listed alphabetically in the Customize dialog
box’s Tools pane, unfortunately. The pane is a bit of a pain by listing the commands in groups of
related functions, such as “2D Constraints” and “Annotations.”

Guessing which description is for the ObjectScale command

Worse, the Tools pane does not use the actual command names, but command descriptions. You’ll
never find the ObjectScale command by scrolling through the Tools pane, because it is named “Add/
Delete Scales...”. Sigh. It can be a little bit painful to find the command (a.k.a. tool) you want.

So BricsCAD provides a search field to look for command names.

Searching for commands and descriptions

1.	 Enter	a	command	name,	and	it	jumps	to	the	command	name	in	the	Tools	pane.	So,	you	can	type	“ob-

jectscale”	and	it	goes	to	the	“Add/Delete	Scales”	item.	

2.	 Press	Enter	to	find	the	next	use	of	the	command	name.

Searching for the ObjectScale command

Disappointingly, the search for command names does not work in the Customize pane.

 5 Introduction to the Customize Dialog Box 79

TABS OF THE CUSTOMIZE DIALOG BOX

The Customize dialog box has a row of tabs that access the primary user interface elements:

Tabs segregating the customizations for different areas of the user interface

 Ð Menus tab — customizes menus, sub-menus, and shortcut menus

 Ð Toolbars tab — customizes toolbars, buttons, flyouts, and icons

 Ð Ribbon tab — customizes tabs and panels

 Ð Keyboard tab — customizes keyboard shortcuts

 Ð Mouse tab — customized mouse buttons and double-click actions

 Ð Tablet tab — customizes digitizer buttons and tablet menus

 Ð Quad tab — customize the Quad cursor

 Ð Properties tab — customizes rollover properties

 Ð Workspace tab — customizes the look of workspaces

 Ð Aliases tab — customizes command abbreviations

 Ð Shell Commands tab — customizes commands that run programs external to BricsCAD

When you choose a tab, the Customize dialog box displays the associated customizable content, as
described fully in the following chapters.

SHORTCUT MENUS

When you right-click different areas of the Customize dialog box, a number of shortcut menus be-
come available. Different ones appear, depending on where you right-click in the dialog box. Some
of these are illustrated by the figure below.

Shortcut menu that appear when different elements are right-clicked

80 Customizing BricsCAD V19

Most of the options are self-explanatory, but there are two whose subtlety can get lost on me. These
are Insert and Append. The difference between them is as follows:

 Append — adds	the	new	item	at	the	end	of	the	list

 Insert — places	the	new	item	before	the	selected	item

The process of customizing toolbars and menus is an identical process; the only difference is that
menus have a few more options, such as check marks and gray text.

APPLY AND OK BUTTONS

When you make a change in the Customize dialog box, BricsCAD highlights it, turning the change
to boldfaced text, such as for the Title field shown below. This is handy as it reminds you what
has changed.

Changed parameters displaying boldface text

The boldfacing remains visible, however, only until the dialog box closes; the next time you open it,
the text again looks normal. You commit changes to the customization by clicking the OK button:

OK and Cancel buttons

Here’s what the buttons mean:

 Ð OK — applies the changes, and then exits the dialog box

 Ð Cancel — reverses (undoes) the changes, and then exits the dialog box

After you click OK, BricsCAD applies the changes to a copy of the default.cui file. This way, the
original default.cui file is kept untouched.

 5 Introduction to the Customize Dialog Box 81

VIEWING CHANGES MADE TO CUSTOMIZE

(new in V19) You can see a list of the changes made to the Customize dialog box, just as with the
Settings dialog box. To see them, click the Manage Your Customizations button:

Accessing the changes to customizations

The Manage Customizations dialog box might initially look intimidating.

Managing customizations

The key understanding it is to use the color coding to figure out what is going on. Near the bottom
of the dialog box is a list of the colors and their meanings:

Color coding of changes to customizations

Color Meaning

Green Element was added to the default customization set up
Blue Element was changed
Red Element was removed

So when you look at the left pane, you see in green the list of elements that changed, modified in
blue, and removed in red, if any.

List of changes by category

82 Customizing BricsCAD V19

Here we see that the macrotext.cui and Macro Text elements were added, because they are shown
in green, while Content Browser and Properties were changed (blue).

The next step is to examine what changes were made to the blue elements. To do so, follow these
setps:

1.	 Select	an	element	that	is	shown	in	green,	such	as	Content	Browser.

2.	 Cast	a	glance	at	the	right-hand	pane,	which	lists	the	properties	of	the	selected	element.

Changes to an element shown in blue

3.	 The	properties	that	changed	are	shown	in	blue.	In	this	case,	the	Display	parameter	was	changed	to	“Yes.”	

The right-hand panel is view-only; you cannot change anything here, other than to accept or reject
changes. To make a change, you have to go back to the Customizations dialog box.

 Ð To accept the change, do nothing

 Ð To reject the change, uncheck the element:

Check boxes accepting and rejecting changes to customization

Additional Management Options
(new in V19) The two options in the lower-left of the dialog box offers this possibilities:

 Retain Customizations	button	is	a	shortcut	to	turn	on	all	the	check	boxes	next	to	elements.	Should	you	

have	turned	off	any	of	them,	then	clicking	this	button	checking	the	boxes	next	to	Content	Browser,	

Properties,	and	so	on	

Buttons at the bottom of the dialog box

	 Revert to Defaults	button	is	a	shortcut	to	turn	off	all	checkboxes.	BricsCAD	pops	up	a	tooltip	to	ask	if	you	are	

sure,	because	it	will	it	copt	the	untouched	default.cui	file	over	the	modified ones.	

Erasing all your changes, and reverting to the original CUI content

 5 Introduction to the Customize Dialog Box 83

	 Notice	that	the	check	boxes	are	cleared	next	to.

 Show Positional Modifications check	box	toggles	the	display	of	elements	that	have	only	changed	their	

position	in	the	Customize	dialog	box,	a	trivial	change	that	otherwise	clutters	the	content	of	this	dialog	box.

Toggling the display of position changes

	 When	you	turn	it	on,	the	dialog	box	looks	like	this:

All changes displayed, all of them

Click OK to exit the dialog box.

Using Partial Menus to Customize BricsCAD Correctly

The following seven chapters show you how to change the contents of the Customize dialog box to
modify the user interface. It is best, however, to make changes to a partial customization file, rather
than the main “default.cui”one for a couple of good reasons:

•	 The	primary	default.cui	file	remains	unchanged

•	 Your	customization	can	be	shared	with	other	BricsCAD	users

SETTING UP A NEW PARTIAL MENU

Before carrying out changes in the Customization dialog box, create first a new partial customiza-
tion file in which you carry out your work.

In the Customize dialog box, take the following steps:

1.	 From	the	File	menu,	choose	Create New Partial CUI File.

Starting to create a new partial customization file

84 Customizing BricsCAD V19

2.		 Notice	the	Create	a	Customization	File	dialog	box.	Enter	a	name	for	the	new	.cui	file,	such	as	“MyCustomiza-

tion,”	and	then	click	Save.

Naming the new CUI file

3.	 Back	in	the	Customize	dialog	box,	notice	the	new	item	called	“MYCUSTOMIZATION.”	The	same	item	appears	

in	each	tab	controlled	by	the	.cui	file.	Below,	I	show	the	new	item	in	the	Menu,	Ribbon,	and	Mouse	tabs.

Left to right: MyCustomization item added to Menu, Ribbon, and Mouse tabs

	 The	other	thing	to	notice	is	that	the	path	to	your	new	.cui	file	is	listed	down	below	in	the	parameters	pane:

File parameter indicating path the to partial .cui file

4.		 Now,	to	actually	use	the	partial	CUI	file	for	customization.	Here	are	the	steps	for	writing,	for	instance,	a	new	

menu:

a.	 In	the	Customization	dialog	box,	click	the	Menus	tab.

b.	 Scroll	down	to	the	MyCustomization	section.

c.	 Right-click	Main Menus.

d.	 From	the	shortcut	menu,	choose	Append Main Menu.

 5 Introduction to the Customize Dialog Box 85

e.	 Carry	on	as	described	in	the	next	chapter.

Naming the new menu

Sharing Customizations
By using partial customization files, you can easily share the customizations you make with others in
your office, your clients, and maybe even on the Bricsys eStore at https://www.bricsys.com/estore/!

Follow these steps:

1.	 Go	to	the	folder	that	holds	your	partial	customization	file.	To	locate	the	folder,	click	on	the	name	of	the	par-

tial	item,	then	copy	and	paste	the	path	from	the	File	parameter:

a.	 Select	all	of	the	path	by	dragging	the	cursor	across	all	of	the	text.	

Selecting the text of the path

b.	 Use	the	Ctrl+C (Cmd+C	on	Macs)	shortcut	to	copy	the	path	to	the	clipboard.	(You	can	try	to	right-click,	

but	no	shortcut	menu	will	appear.)

c.	 In	the	File	Manager,	paste	the	text	into	the	address	bar	(Windows	shown	here):

Pasting the path into the address bar

d.	 At	this	point,	one	of	two	things	can	happen:

	 •	 If	you	press	Enter,	then	the	.cui	file	will	be	opened	by	a	text	editor

	 •	 If	you	press	Backspace	to	erase	the	file	name	from	the	path,	then	the	file	manager	goes	to	the	folder

	 For	this	tutorial,	press	Backspace	to	erase	the	file	name,	such	as	“MyCustomization.cui”.

Erasing the file name from the path

86 Customizing BricsCAD V19

e.	 Now	press	Enter.	Notice	that	the	file	manager	displays	the	contents	of	the	folder.

Files displayed in the support folder

2.	 You	can	now	copy	the	partial	.cui	file	to	a	USB	drive	or	to	a	central	file	server	like	Dropbox	or	attach	it	to	an	

email	message	or...

3.	 To	load	a	partial	customization	file,	you	can	use	the	Customize	dialog	box’s	File | Load Partial CUI File option,	

or	you	can	use	the	MenuLoad	command.	The	dialog	box	is	not	exactly	clearly	laid	out,	so	here	are	the	steps	

to	follow:	

a.	 Enter	the	MenuLoad	command.

b.		 Notice	the	Customization	Group	dialog	box.	Click	the	 	Browse	button.

Clicking the Browse button in the Customization Groups dialog box

 5 Introduction to the Customize Dialog Box 87

c.	 In	the	Choose	a	Customization	File	dialog	box,	navigate	to	the	folder,	drive,	or	network	location	that	

holds	the	.cui	file	you	want.	

d.	 Click	Open.

e.	 Back	in	the	Customization	Groups	dialog	box,	click	Load.

Loading the partial customization file into BricsCAD

f.	 Notice	that	the	partial	customization	is	added	to	the	list	of	groups	loaded	into	BricsCAD.	Click	Close	to	

exit	the	dialog	box.

The added customization should now appear in the BricsCAD user interface. If it contains menus,
then the new menus will appear at the end of the menu bar. If ribbon tabs, then at the end of the
ribbon. And so on.

Removing Partial CUI Files
You use this same dialog box to unload partial customizations that you no longer want in the CAD
program. To do so, start the MenuLoad command, choose the Customization Group (such as “My
Preferences”), and then click Unload.

88 Customizing BricsCAD V19

Notes

Customizing the Menu Bar
and Context Menus

Menus arrange commands in logical groups. The menu uses words primarily, with pic-
tures as an afterthought. The logical arrangement and use of words makes it easy to find specific
commands,more so than any other interface, especially for new users and for commands that we
rarely use.

In this chapter, you learn how to modify the menu bar’s menus and of context menus. You make
changes to menus via the Customize dialog box.

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Modifying menu items

• Adding new menu items

• Adding new tools (commands)

• Creating context menus

• Sharing menus

• Importing menus from AutoCAD

CHAPTER 6

90 Customizing BricsCAD V19

QUICK SUMMARY OF MENU COMMANDS & VARIABLES

The following commands work with menus:

Menu — loads menu files into the program; supports the following file formats:

Format Meaning

CUI Standard menu file used by AutoCAD since release 2007, and BricsCAD since V8
CUIX Packaged menu files used by AutoCAD since release 2010
MNU Legacy menu files used by AutoCAD and AutoCAD LT prior to release 2008
MNS LISP source code used by MNU files
ICM IntelliCAD menu file used by BricsCAD V7 and earlier

MenuLoad — loads menu groups

MenuUnload — unloads menu groups

The following variables work with menus:

MenuBar — toggles the display of the menu bar

MenuName — reports the path and name of the current menu file

MODIFYING THE MENU BAR

BricsCAD lists nearly all of its commands on the menu, organizing them by categories. For instance,
the Draw menu is where you find most drawing commands; most file commands in the File menu.

Sometimes, however, you may want to change the content of menus or add a menu — something
that is common for third-party developers particularly.

In addition, you may wan to add and remove parts of menus, without affecting the original menu
structure. These parts of menus are known as partial menus. For example, Bricsys adds “Parametric”
as a partial menu to the Platinum edition of the software. It appears as another word on the menu bar.

Technical Note	 The	items	shown	in	the	Customize	dialog	box	reflect	the	contents	of	default.cui	and	other	
customization	files.	As	you	make	changes	in	the	dialog	box,	BricsCAD	records	the	changes	in	the	appropri-
ate	.cui	or	.pgp	file,	and	then	adjusts	the	looks	and	actions	in	the	user	interface	of	BricsCAD.

 6 Customizing the Menu Bar and Context Menus 91

Touring the Menu Tab
Menu customization takes place in the Customize dialog box. Wnter the Customize command or
Cui alias at the ‘:’ command prompt, or else right-click any toolbar and then select Customize.

Notice the Customize dialog box. If necessary, click the Menus tab.

Customize dialog box showing the Menus tab

On the left side you can see the Main Menus pane. The names, such as File, Edit, and through to
Help, represent the default menus available in BricsCAD. You can change all this, naturally.

To see the menus actually displayed by BricsCAD at this moment, however, you need to switch to
the Workspace tab. While the Menus tab defines menus, the Workspaces tab determines which
menus are seen. :

1.	 Click	the	Workspaces	tab.

2,	 	Under	the	Drafting	node,	open	the	Menus	node,	and	there	is	the	list	of	active	menu	items.	

Workspaces tab showing the menus of the Drafting workspace

It matches what you see on the menu bar, in the same order. Shown here is the menu bar from the
“Drafting” workspace. The menu bar will probably change when you switch to another workspace.

Menu bar for Drafting workspace

92 Customizing BricsCAD V19

QUICK SUMMARY OF MENU PARAMETERS

The look of every menu item is defined by parameters found in the Customize dialog box’s Menus tab. The position of
menus, submenus, menu items, and separators is defined by their position in the dialog box.

Here is the meaning of the parameters:

Title — label that appears in the menu. The text is displayed literally, but other characters and metacharac-
ters can be employed:

• ... (ellipsis) means the command opens a dialog box

• & (metacharacter) underlines the character following; used for keyboard shortcuts in conjunction
with the Alt key

Diesel — code written in Diesel programming code

Tool ID — identifier assigned to the menu item by BricsCAD; do not adjust this ID

Help —sentence of text displayed on the status bar when you pause the cursor over the menu item

Command — macro to be executed when you click the button; the macro can consist of command names
or aliases, option words, Diesel, and LISP code

Image — name of the bitmap (a.k.a. picture or icon) displayed to the left of the menu item; the image is
changed by clicking the ... button that appears when this parameter is selected.

 6 Customizing the Menu Bar and Context Menus 93

Opening and Closing Nodes
Notice that each menu title has a next to it. For instance, click next to File to reveal the items
in the File dropdown menu. The items under File match the names you see in the File menu, as
illustrated below.

Left: File menu tree displayed by the Customize dialog box; right: Identical menu items in the File menu.

Gray Dots and Separator Lines
Notice that there are gray dots that prefix items in the dialog box. These dots indicate “container”
items, menu items which literally contain other items. Here are examples:

 BRICSCAD	is	the	name	of	the	menu group.	It	contains	Main Menus	(the	items	seen	on	the	menu	bar)	and	Con-

text Menus (the	shortcut	menus	that	appear	when	you	right-click	objects.)

 Main Menus	contains	the	items	that	appear	on	the	menu	bar.	

 File	is	the	name	of	the	first	menu	to	appear	along	the	menu	bar,	and	it	contains	file-related	commands.	

The rows of dashes “-----” indicates a separator bar, the gray line that separates groups of menu
items. See figure above.

94 Customizing BricsCAD V19

UNDERSTANDING MENU TITLE CONVENTIONS

Menu names employ special characters to define conventions. To see what they mean, choose the
New command and then look at the bottom part of the dialog box — the Menu Item pane.

Menu Item pane showing parameter fields

The Title field contains the word “New” along with several characters, which I highlighted below
in blue boldface:
 &New...

Let’s take a look at the meaning.

Keyboard Shortcut - &
The ampersand (&) is placed in front of the keyboard shortcut letter — N in this case (&N). This
causes the letter N to be shown underlined in the menu when you press the Alt key.

Keyboard shortcut letters allow you to access the menu without a mouse, just from the keyboard.
To do so, you hold down the Alt key and then choose the underlined letters in the menus. For ex-
ample, to access the New command in the menu, follow these steps:

1.	 Press	the	Alt key.	Notice	each	menu	name	on	the	menu	bar	has	one	letter	underlined,	such	as	File.

Underlined letters on menu bar

2.	 To	access	the	File	menu,	press	F on	the	keyboard (for	File).	Notice	now	that	items	in	the	menu	also	have	

underlined	names,	such	as	New	and	New	Wizard.	

Underlined letters in File menu

3.	 To	access	the	New	command,	press	N on	the	keyboard (for	New).

The convention is that the first letter should be underlined for mnemonic purposes. For example,
New, Open, and Save each have the first letter underlined.

When two names in a menu start with the same letter, however, then the second name has to have
a different letter underlined. For example, New has N underlined, and so New Wizard is given Z.

 6 Customizing the Menu Bar and Context Menus 95

Dialog Box - ...
The ellipsis (...) indicates that the command opens a dialog box. Note that New... displays a dia-
log box, whereas Save does not. By itself, the ellipsis does nothing; it is merely a user interface
convention. This means that it’s your job to add the ellipsis when you know a command will open
that dialog box.

Menu Titles
The name of a menu item can be the same as the command it operates — or it can be different. In
most cases, the menu title should be the same as the command it carries out. For instance, selecting
the New... item causes BricsCAD to executes the New command.

When the command name is somewhat cryptic, however, then it makes sense to switch to a descrip-
tive title, such as using “Polyline” for the PLine command.

COMMANDS USE MACROS

Macros are the programming code behind menu picks. As I noted above, choosing File | New ex-
ecutes the New command. In the Customize dialog box’s Menu Item pane, the command is shown
as ^c^c_new in the Command field.

Macro being shown in the Command field

TIPS	 You	can	type	commands,	options,	and	metacharacters	directly	into	the	Command	text	box.		
	
As	an	alternative,	you	can	select	commands	from	the	Available Tools	pane,	and	then	click	Insert Tool.	The	
advantage	to	this	alternative	approach	is	that	BricsCAD	automatically	adds	the	^C	and	_	metacharacters	
for	you.

Like titles, macros make use of metacharacters. The macro syntax has the following meaning:

Cancel - ^c
The ̂ c metacharacter means “cancel.” The caret (̂) is the equivalent of the Ctrl key; together with
C, ^c is the same as pressing the Esc key to cancel a command. The convention is to start (almost)
every macro with two ^c so that nested commands are cancelled.

Transparent - '
You do not prefix macros with ̂ c if the command is to be operated transparently, such as '_Redraw.
The apostrophe metacharacter (') means the command can be used during another command.
Not all BricsCAD commands are transparent.

96 Customizing BricsCAD V19

Internationalize - _
The underscore (_) “internationalizes” the command. BricsCAD is available in a variety of (human)
languages. By prefixing commands with the underscore, the command word is understood, even if
it is used by the Spanish or German releases of BricsCAD.

The PromptOptionTranslateKeywords variable toggles the use of international commands. When
off, the underscore (_) prefix is not needed for command input; default = on.

Enter - ;
The semicolon (;) is equivalent to pressing the Enter key. For example, the macro for the View |
Zoom | Zoom In menu item looks like this:
 '_zoom;2x

In this macro, the Zoom command accesses its 2x option to zoom into the drawing. You typically
use the semicolon to separate commands from options.

The convention is to not include the semicolon at the end of the macro, because BricsCAD auto-
matically adds the Enter.

Pause - \
The backslash (\) pauses the macro for user input. In the macro below, BricsCAD will pause twice,
once for each backslash. (Below, I show commands and options in blue, while pauses for user input
are in cyan.)
 ^c^c_dimlinear;_rotated

By the way, this is how the DimLinear command appears in the command bar:
 : dimlinear
 ENTER to select entity/<Origin of first extension line>: (User picks first point.)
 Origin of second extension line: (User picks second point.)
 Angle/Text/Orientation of dimension line: Horizontal/Vertical/Rotated: _ROTATED
 Angle of dimension line <0>: (And so on.)

Here is how the macro works:

1.	 Any	existing	command	is	cancelled	by	the	^c^c.

2.	 The	DimLinear	command	starts.

3.	 The	backslash	metacharacter	forces	the	macro	to	wait	for	input	from	the	user,	such	as	one	of	these:	

 Ð The user picks a point on the screen

 Ð The user enters a value at the keyboard, and then presses Enter

4.	 The	second	backslash	forces	the	macro	to	wait	at	the	‘Origin of second extension line’ prompt for the

user to react.

5.	 The	macro	executes	the	Rotated	option.

 6 Customizing the Menu Bar and Context Menus 97

EDITING THE HELP STRING

When you change the purpose of a menu item, then you may need to change the text of the help
string as well. The help string is displayed on the status bar when the user selects the menu item.

Help text displayed on the status bar

You edit the text in the Help String textbox.

Help text specified in the Customize dialog box

Tutorial: Adding Menu Items

You can add new items to menus by right-clicking an existing menu item in the Customize dialog
box, and then choosing an option from the shortcut menu. The shortcut menu allows you to create
new menus, add commands and sub-menus to existing menus, and add separator bars.

In this tutorial, you add the CloseAll command to the File menu; it will be located after the Close
item. The CloseAll command closes all open drawings.

1.	 With	the	Cui	alias,	open	the	Customize	dialog	box,	and	then	choose	the	Menus	tab.

2.	 In	the	Main	Menus	pane,	open	the	File	item.	

3.	 Find	the	Close	item.	Below	it	is	a	-----	(separator)	item.	

4.	 Right-click	the	separator	to	place	the	new	item	before	it.	Notice	that	BricsCAD	displays	a	shortcut	menu.	

Adding an item to the menu by inserting it

98 Customizing BricsCAD V19

5.	 To	add	a	the	new	menu	item	above	the	currently-selected	one,	choose	Insert Item.	Notice	the	Add	Menu	

Item	dialog	box.	

Add New Item dialog box

	 This	dialog	box	lists	all	commands	available	in	BricsCAD	—	just	like	that	Available	Tools	pane.	(I’m	not	sure	

why	there’s	that	duplication.)	The	dialog	box	lets	you	select	existing	commands	and	create	new	ones.

Historical Note	 Earlier	releases	of	BricsCAD	had	an	Append Item	option,	which	added	the	new	item	to	the	
end	of	the	menu	structure.	It	didn’t	make	much	sense,	and	was	subsequently	removed.

6.	 In	the	dialog	box,	choose	the	Select Available Tool	option.	It	lets	you	pick	one	of	BricsCAD’s	built-in	com-

mands.	(The	other	option,	Create	New	Tool,	is	for	creating	new	commands,	and	is	described	later.)

Choosing Select Available Tool option

7.	 Under	the	list	of	Available	Tools,	open	the	File	container,	and	then	choose	Close All.	

Choosing ‘Close All’ from the File section

 6 Customizing the Menu Bar and Context Menus 99

	 At	the	top	of	the	dialog	box,	notice	that	BricsCAD	has	filled	in	most	of	the	parameters	for	you,	such	as	Title,	

Help,	and	so	on.	They	are,	however,	grayed	out;	if	you	wish	to	edit	these	values,	you	need	to	wait	until	you	

are	back	in	the	Customize	dialog	box.

Grayed-out parameters

8.	 Click	OK.	Notice	that	the	Close All	command	is	added	to	the	list	under	Close.

Close All command added to the File menu

9.	 To	ensure	the	new	command	works,	follow	these	steps:

a.	 Close	the	Customize	dialog	box	by	clicking	OK.

b.	 Choose	the	File	menu.	Notice	that	the	Close All item	has	been	added.

Close All command appearing in the File menu

c.	 Click	Close All.	Does	it	work	correctly?	It	should	prompt	you	to	save	all	open	drawings	that	have	changed	

since	being	loaded.

TIP	 Not	sure	which	commands	can	be	added	to	menus?	Peruse	the	list	in	the	Customize	dialog	box	found	
under Available Tools.	It	lists	all	commands	found	in	BricsCAD,	sorted	by	menu	order.		
	
The	Available	Tools	listing	also	allows	you	to	add	your	own	commands,	which	can	be	constructed	from	
other	commands	or	from	LISP	routines.	

100 Customizing BricsCAD V19

TUTORIAL: DELETING MENU ITEMS

To delete a menu item, select it, and then right-click. You can delete individual menu items, as well
as submenus and entire menus.

1.	 From	the	shortcut	menu,	choose	Delete.	

Choosing Delete from the shortcut menu

2.	 BricsCAD	asks	if	you	really	want	to	do	this.	Click	Yes.

Confirming the item should be erased

Did you make a horrible mistake? There is no undo button. Instead, click the Revert to Defaults
button to return the menus to their fresh-out-of-the-box nature. This action, however, also undoes
all other changes you made, including those you may want to keep.

Revert to Defaults button in the Customize dialog box

Tutorial: Adding Tools to Menus

So far, you’ve seen how to add existing BricsCAD commands to menus and toolbars. You also make
“new” commands, which BricsCAD calls tools. These are not so much commands as reworkings
of existing commands — pieces of simple programming code that simulate commands — and are
known as “macros.” These are described in detail in the following chapter.

To show you how to create new tools, I’ll write a macro that saves the drawing and then starts the
Plot command. So, two commands combined into a single menu pick. The macro looks like this:
 ^C^C_qsave;_plot

 6 Customizing the Menu Bar and Context Menus 101

I’ll name the macro “Save’n Print” and add it to the File menu, like this:

1.	 In	the	Customize	dialog	box’s	Menu	tab,	follow	these	steps:

a.	 Choose	the	File	item.

b.	 Right-click	Print.

Inserting an item

c.	 From	the	shortcut	menu,	choose	Insert Item.

2.	 Notice	the	Add	New	Item	dialog	box.	Select	the	Create New Tool option.

Creating a new tool (aka a new command)

3.	 Fill	in	parameters,	as	follows:

Parameter Entry Comment

Toolbox File Adds the new command to the File category of
 available tools
Title Save'n Print Name that appears in the File menu
Help Saves the drawing, and then Help text that appears on the status bar
 starts the Plot command .
Command ^C^C_qsave;_plot Macro that cancels the current command, saves the
 drawing, and then starts the Plot command
Image (leave blank) No images are needed for menus

	 When	the	parameters	are	filled	in,	the	dialog	box	looks	like	this:

Parameters filled out for the new tool

	 Ignore	the	bottom	half	of	the	dialog	box,	the	one	that	lists	all	commands.	

102 Customizing BricsCAD V19

4.	 Click	OK.	Back	in	the	Customize	dialog	box,	notice	that	the	new	tool	is	added	to	the	File	menu	(on	the	left)	

and	to	the	list	of	Available	Tools	(on	the	right).	

New tool added to the menu

	 In	addition,	the	new	set	of	parameters	is	shown	in	the	Menu	Item	pane	(at	the	bottom	of	the	dialog	box.)	

You	can	edit	the	parameters	here,	just	like	with	any	other	command.

5.	 Click	OK.

6.	 Test	the	new	item	by	selecting	Save’n Print	from	the	File	menu.

Testing the new tool

Context Menus

Context menus go by a number of names, such as “shortcut menu” or “right-click menu.” Whatever
the name, they are the menus that appear when you press the mouse’s right button — the action
known as “right-clicking.”

    
Left: Mouse highlighting right button; right: Example of a context menu

 6 Customizing the Menu Bar and Context Menus 103

Different shortcut menus appear depending on where you right-click in BricsCAD: while drawing
or while editing or in the user interface.

As well, the menu that appears depends on whether you hold down the Shift and/or Ctrl keys
at the same time as right-clicking. The Menu tab’s Context Menu section defines the menus; the
Buttons tab defines some other right-click actions. (See Chapter 10).

You can customize the content of some context menus, though not all of them. Specifically

 Ð You can customize those that appear when you right-click inside the drawing area

 Ð You cannot change the menus that appear when you right-click outside of the drawing area, such as on the
status bar or a toolbar

TIP	 If	shortcut	menus	do	not	appear	when	you	right-click	the	mouse,	then	you	need	to	turn	on	several	
related	options	in	the	Settings	dialog	box,	like	this:	
	
a.	 Enter	the	Settings command.	
b.	 In	the	Search	field,	enter	“shortcut	menus.”	
c.	 Turn	on	all	options,	as	illustrated	below.	
								

TUTORIAL: CUSTOMIZING CONTEXT MENUS

Context menus are customized in the much same way as regular menus.

1.	 Open	the	Customize	dialog	box	(Tools | Customize),	and	then	choose	the	Menus	tab.

2.	 In	the	left	hand	pane,	scroll	down	until	you	reach	Context Menus.

3.	 Click	the	+	to	open	the	Context Menus	tree.	Notice	the	menus	represented	there,	as	illustrated	below.	

Accessing the list of context menus in the Customize dialog box

104 Customizing BricsCAD V19

Below is the context menu that is displayed when you select a text object, and then right-click.
Commands specific to text editing are added by BricsCAD, which I have emphasized in blue.

Context menu when a text object is selected

There are two types of context menus, full and partial:

	 Full menus —	replace	existing	context	menus,	and	all	other	items	defined	by	the	Customize	dialog	box.

	 Partial menus —	add	items	to	context	menus,	such	as	editing	text,	polylines,	dimensions,	and	attributes.	

Context Menu Name Menu Appears As You Right-click When . . .

Full Context Menus
Command A command is active
Default No command is active
Edit Object is selected, other than those listed below
Grips A hot (red) grip is active
Entity Snap The Shift key is held down

Partial Context Menus
OLE Object OLE object is selected
Text Object Text object is selected
Multiline Text Object Multi-line text object is selected
Block Object Block is selected (formerly named “Insert”)
Attribute Block Object Attributed is selected (formerly “Attribute Block Reference”)
XREF Object Externally-referenced drawing is selected
Polyline Object Old-style polyline is selected
LW Polyline Object New-style lightweight polyline is selected
Dimension Object Dimension is selected
Dimension Objects One or more dimensions are selected
Table Object Table is selected
Hatch Object Hatch pattern is selected
Multiple Leader Object Multi-line leader is selected
Attribution Definition Object Attribute definition is selected
Tolerance Object Tolerance is selected

 6 Customizing the Menu Bar and Context Menus 105

The structure of the context menu’s definition is similar to that of regular menus. For instance,
items are listed in the order in which they appear, and there are submenus and separator lines.

Left: Context menus in Customize dialog box; right: Context menu appears when right-clicking during an active command

4.	 Adding	commands	is	no	different	than	before.	Follow	the	previous	two	tutorials	on	adding	existing	com-

mands	and	new	tools	to	context	menus.

5.	 There	is	one	thing	different	in	creating	new	context	menus:	they	are	activated	only	when	you	right-click	

something	specific.	BricsCAD	has	a	list	of	these	specific	actions,	also	known	as	“reactors.”	

	 Right-click	Context Menus.

6.	 From	the	shortcut	menu	that	appears,	choose	Append Context Menu.	

Appending a context menu

		 Here	it	gets	complicated	I	find,	for	Bricsys	redesigned	the	Add	Context	Menu	dialog	box	to	split	options	

into	two	streams.	

Add Context Menu dialog box

106 Customizing BricsCAD V19

The	Use This Menu	options	are	as	follows:

•	 As Regular Context Menu	—	this	option	accesses	context	menus	that	don’t	involve	entities,	such	as	

during	commands	or	right-clicked	grips.	There	are	just	five	of	them.	To	choose	one	of	them,	click	the Add

Context	button.	The	Add	Context	Alias	dialog	box	appears,	as	shown	below.

Selection of non-entity shortcut menus

•	 As Context Menu on Specific Entities —	this	option	accesses	context	menus	for	entities,	such	as	text	

and	polylines.	Click	the	Add Entity Type(s) button to	select	one	from	the	Add	Entity	Alias	dialog	box.	

Selection of shortcut menus specific to entities

7.	 For	this	tutorial,	you	create	add	a	shortcut	menu	that	involves	viewport	objects.	Follow	these	steps:

a.	 Choose	As Context Menu on Specific Entities.

b.	 Click	Entity Type(s).	Notice	the	Add	Entity	Alias	dialog	box.

c.	 Scroll	down	the	list,	and	then	choose	Viewport.	To	get	there	quickly,	press	‘v’.

Selecting the Viewport as the entity

 6 Customizing the Menu Bar and Context Menus 107

d.	 Click	OK	to	close	the	dialog	box.	Notice	that	“Object_Viewport”	is	added	to	the	list	of	entities.

Viewport added as the specific entity

e.	 Add	text	to	the	Menu	Title,	such	as	“Viewport	Borders”...

Naming the menu

	 ...	and	then	click	OK.	Notice	that	BricsCAD	adds	the	new	menu	to	the	list.	It	is,	however,	empty	of	com-

mands.

Viewport Borders item with no commands

8.	 Your	job	now	is	to	populate	the	context	menu	with	commands.	Follow	the	instructions	given	earlier	for	regu-

lar	menus.	When	done,	click	OK,	and	then	test	the	new	shortcut	(context)	menu.

TIP	 The	Custom	Alias	option	is	meant	for	third-party	developers	who	create	custom	objects:	

																																															

108 Customizing BricsCAD V19

Tutorial: Sharing Menus

To share customized menus with other BricsCAD users, follow these steps:

1.	 Open	the	Customize	dialog	box	(Customize),	and	then	from	the	File	menu,	choose	Save Main CUI File As.	

Saving the menu as a CUI file

2.	 In	the	dialog	box,	enter	a	file	name,	and	then	click	Save.	BricsCAD	saves	the	menu	structure	as	a	.cui	file.	

This	action	saves	menus,	toolbars,	and	so	on	in	the	same	.cui	file.	It	does	not	save	aliases	or	shell	commands,	

because	they	are	stored	in	a	.pgp	file,	which	you	cannot	access	from	the	Customize	dialog	box.

3.	 Copy	the	.cui	file	to	the	other	computers	via	your	network,	email,	or	a	USB	thumbdrive.	

4.	 On	the	other	computer,	import	the	.cui	file	through	the	Customize	dialog	box’s	File	menu.	

Loading the CUI file as a partial menu

	 The	menu	presents	you	with	two	options:

•	 Load Main CUI File	—	overwrites	existing	menus,	toolbars,	and	keyboard	shortcuts	with	the	new	file.	(If	

you	did	not	mean	to,	use	the	Revert	to	Defaults	button	to	correct	the	mistake.)

•	 Load Partial CUI File	—	adds	the	contents	of	the	file	to	the	existing	menus,	toolbars,	and	so	on.

IMPORTING AUTOCAD MENUS

The Customize dialog box’s File | Load items import three kinds of menu files into BricsCAD. Choose
them from the droplist in the Choose a Customization File dialog box:

	 CUI	—	standard	menu	file	used	by	AutoCAD	since	release	2007,	and	BricsCAD	since	V8.

	 CUIX	—	packaged	menu	files	used	by	AutoCAD	since		release	2010	

	 MNU	or	MNS	—	legacy	menu	files	used	by	AutoCAD	and	AutoCAD	LT	prior	to	release	2008.

	 ICM	—	IntelliCAD	menu	file	used	by	BricsCAD	V7	and	earlier,	as	well	as	CAD	systems	based	on	IntelliCAD.

Careful: Although BricsCAD imports AutoCAD menu files effortlessly, menu picks sometimes do
not work because AutoCAD macros can contain macro code and metacharacters unsupported by
BricsCAD. For more information on writing macros for menus, see Chapter 8.

Customizing Toolbars
and Button Icons

The best way to customize commands in BricsCAD is through toolbars, in my opinion. Toolbars
give us single-click access to almost any command or group of commands (a.k.a. macros). Instead of
hunting through menus (is the Hatch command under Draw or Tools?) or trying to recall the exact
syntax of a typed command (was that Viewpoint or VPoint?), toolbars let us collect our most-used
commands into one or more convenient strips.

BricsCAD lets you customize these aspects of toolbars:

 Ð Name, default position, size, and default visibility of toolbars

 Ð Flyouts and separator bars

 Ð Titles, macros, help strings, and button images

All of these elements are handled by the Customize dialog box and working with them is explained
in this chapter.

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Customizing the look of toolbars and buttons

• Creating new toolbars and flyouts

• Understanding controls and separators

CHAPTER 7

110 Customizing BricsCAD V19

QUICK SUMMARY OF TOOLBAR COMMANDS & VARIABLES

The following command works with toolbars:

Toolbar and -Toolbar — displays and hides toolbars by name, at the command line

The following variables work with toolbars:

ToolbarIconSize — changes the size of icons between regular, large, and extra large

MenuName — reports the path and name of the current menu file

Customizing the Look of Toolbars

There are two ways to customize toolbars in BricsCAD:

 Ð Change the look of toolbars

 Ð Change the functions executed by toolbar buttons

The first one is simpler, as it involves cosmetic changes, such as rearranging buttons, making new
icons, or defining new toolbars. The second way involves programming by (re)writing macros that
activate one or more commands when the toolbar button is clicked.

First, here is how to change the looks of toolbars.

REARRANGING TOOLBARS

The first time you start a fresh copy of BricsCAD in the 2D workspace, you’ll see that it has several
toolbars docked along the edges of the drawing area. “Docked” means that when you move the main
BricsCAD window, docked toolbars move along with it.

Docked toolbars

Floating toolbar

Drag handle

Close toolbarDrag title bar

Docked and floating toolbars

Toolbars don’t have to be docked; they can float. When toolbars float, they are independent of the
BricsCAD window. When you move or resize the BricsCAD window, the floating toolbars remain
where they are.

 7 Customizing Toolbars and Button Icons 111

Tutorial: Dragging and Moving Toolbars
Look closely at the left end of a toolbar that is docked. There you see a line of dots, shown in the
figure above. This is called the “drag handle.” By dragging the handle, you move the toolbar to an-
other location in the BricsCAD window or make it float.

You move floating toolbars by dragging them by their title bars. Floating toolbars can be relocated
to other edges of the drawing area — or left floating on the screen.

Here is how to move toolbars:

1.	 Position	the	cursor	over	the	drag	handle	(line	of	dots).

2.	 Hold	down	the	left	mouse	button,	and	then	move	the	mouse.

3.	 Drag	the	toolbar	away	from	the	edge	of	the	drawing	area.	Notice	the	thin,	gray,	rectangular	outline.	This	is	

called	the	dock indicator,	as	shown	by	the	figure	below.	

Moving a docked toolbar

	 If	you	were	to	release	the	mouse	button	at	this	point,	the	toolbar	would	jump	back	to	its	docked	position.	

TIP	 You	prevent	the	toolbar	from	docking	inadvertently	by	holding	down	the	Ctrl key.	
	
To	prevent	any	toolbar	or	panel	(palette)	from	moving,	use	the	LockUI	variable.	Its	options	are	listed	in	the	
Settings	dialog	box,	as	follows:	

																													

4.	 Drag	the	toolbar	a	bit	further,	and	notice	that	the	rectangular	outline	becomes	thicker.	This	is	called	the	float

indicator.	

Symbology for a floating toolbar

5. Let	go	of	the	mouse	button	now,	and	the	toolbar	floats.	With	the	toolbar	floating,	you	move	it	around	by	

dragging	its	title	bar.

6.	 To	dock	the	toolbar	again,	drag	it	by	its	title	bar	back	against	one	edge	of	the	drawing	area,	and	then	let	go	of	

the	mouse	button.

112 Customizing BricsCAD V19

QUICK SUMMARY OF TOOLBAR PARAMETERS

The look and position of every toolbar is defined by an individual set of parameters defined by the Customize dialog
box. Here is an overview of the meaning of the parameters.

Xval

Button
Yval

Title

Rows (1)

Position
(floating)

Title — identifies the toolbar to the BricsCAD system, and appears on the title bar of the toolbar (you can
make the title any descriptive phrase that you like)

ID — BricsCAD assigned identification of the UI element; read-only (cannot be edited)

Alias — code name assigned by BricsCAD to identify this toolbar (although you can edit this value, I suggest
that this would be an unwise move)

Position — determines whether the toolbar is floating or docked at one of the four edges of the screen;
defines the default position when the toolbar is turned on; choose from Floating, Top, Bottom, Left, or Right
(this parameter had no effect at the time of writing this ebook)

Default Display (formerly Visible) — determines whether the toolbar is displayed or hidden when BricsCAD
starts up; choose from Add to Workspaces and Don’t Add to Workspaces

Rows — number of rows of a floating toolbar

Xval and Yval — x and y coordinates of a floating toolbar’s upper left corner, as measured from BricsCAD’s
upper left corner

(new in V19) BricsCAD V19 adds many more toolbars, especially for BIM and sheet metal design.
The most significant change is in workspaces that use the ribbon, where the Standard toolbar...

... is replaced by the new, more-featured Access toolbar.

 7 Customizing Toolbars and Button Icons 113

TIP Although	not	a	toolbar,	the	Command	Bar	can	also	be	made	to	float	and	resize.	To	float,	drag	
the	left	edge	into	the	drawing	area.	
	

	 	
Once	floating,	you	can	move	the	Command	Bar	window	by	its	title	bar,	and	resize	it	by	its	edges	—	just	like	
a	toolbar.	To	dock	it	again,	drag	the	Command	Bar	window	back	into	place.		
	
To	turn	the	Command	Bar	on	and	off,	press	Ctrl+9	(Cmd+9	on	Mac).

Tutorial: Turning Toolbars On and Off
When you want to turn on a toolbar (or turn one off), then follow these steps:

1. Right-click	any	toolbar	or	the	ribbon.	Notice	that	a	shortcut	menu	appears:	

Accessing UI elements from the shortcut menu

	 BRICSCAD	—	lists	the	names	of	toolbars,	illustrated	at	right

	 Menu Bar —	toggles	the	menu	bar	on	and	off

 Status bar	—	toggles	the	status	bar

	 Clean Screen	—	toggles	the	clean	screen	state

	 Toolbar size —	change	the	size	of	icons	between	normal,	large,	and	extra	large	

	 Customize	—	opens	the	Customize	dialog	box

2.	 Click	BRICSCAD.	A	submenu	lists	the	names	of	toolbars,	as	illustrated	at	right.	The	

check	mark	 	means	that	the	toolbar	associated	with	the	name	is	turned	on	(dis-

played):

 Ð Turn on a toolbar select its name from the submenu. Notice that the shortcut menu
disappears, and the toolbar appears.

 Ð Turn off a toolbar click a name with a check mark.

114 Customizing BricsCAD V19

TIPS	 You	can	turn	on	(or	off)	all toolbars	at	once	through	the	Toolbar		
command,	as	follows:	
	 :	toolbar	
	 Enter	Toolbar	name,	or	<ALL>:	all	
	 Enter	an	option	[Show/Hide]	<Show>:	s
This	command	can	also	turn	on	and	off	individual	toolbars,	which	is	useful	in	macros	and	LISP	routines.	
	
When	toolbars	are	floating,	you	can	turn	them	off	by	clicking	the	red	x	in	the	upper	right	corner.

Making New Toolbars, and Modifying Them

You create new toolbars with any set of buttons of your choosing. You can change the content of
the toolbar by adding and removing buttons, controls, flyouts, and separator bars — as well as
designing your own icons. Let’s see what this means, and how it is done.

TUTORIAL: HOW TO CREATE A NEW TOOLBAR

For this tutorial, you make a toolbar with commands related to grouping, as BricsCAD doesn’t of-
fer such a toolbar. Groups are like unnamed blocks, but unlike blocks are easily editable. They are
made with the Group command.

In this tutorial you create a new toolbar named “Group” that holds the Group command.

List of toolbar
names

Parameters of the
selected toolbar

Available
commands to
add to toolbars

Three panes of customizing toolbars

 7 Customizing Toolbars and Button Icons 115

1. Open	the	Customize	dialog	box.	I	find	the	quickest	way	to	do	this	is	to	type	the	Cui	alias	at	the	command	

prompt.	Other	methods	include	the	following:	

 Ð Right-click any toolbar, and then from the context menu, select Customize

 Ð From the Tools menu, select Customize

 Ð Enter the Customize command

2.	 When	the	Customize	dialog	box	appears,	choose	the	Toolbars tab.	Notice	the	three	panes	and	how	they	

relate	to	toolbar	customization:

 Ð Toolbar pane — (on the left) lists the names of all toolbars available in BricsCAD, sorted according to the
order in which they were created. Within each toolbar name are the names of commands, represented
by icons that appear on the buttons.

 Ð Command pane — (on the right) lists the names of all commands available in BricsCAD, sorted by the
order in which they appear in dropdown menus. For instance, file-related commands are listed under File.

 Ð Parameters pane — (at the bottom) lists parameters controlling the look and function of toolbars and
their buttons. Here you edit the names, command macros, button images, help strings, and optional Diesel
code for each button.

3.	 To	create	the	new	toolbar,	right-click	the	BRICSCAD	node,	and	then	choose Append toolbar	from	the	short-

cut	menu.

Appending a new toolbar

4.	 Notice	the	Add	Toolbar	dialog	box.	

Naming the new toolbar

	 For	this	tutorial,	follow	these	steps:

	 a.	 Enter	“Groups”	for	the	name	
 Title: Groups

116 Customizing BricsCAD V19

	 b.	 Click	OK.	

	 The	name	will	appear	on	the	title	bar	of	floating	toolbars	—	as	well	as	identify	the	toolbar	to	BricsCAD.	Notice	

that	BricsCAD	adds	the	new	(but	empty)	toolbar	named	Group	to	the	end	of	the	list.	Also	notice	that	it	fills	

out	the	Macro	pane	(in	the	lower	half	of	the	dialog	box)	with	some	preset	parameters.

Newly created toolbar named “Groups”

5.	 With	the	toolbar	created,	you	now	add	buttons.	The	easiest	(I	find)	way	is	to	drag	and	drop	buttons	from	the	

Tools	pane	onto	the	new	Groups	node.	Follow	these	steps:

a.	 Because	the	Groups	command	is	listed	under	Tools,	so	scroll	down	to	Tools.	

Finding a command in a collection

b.	 Open	the	Tools	group	by	clicking	the	+	sign.

c.	 Choose	the	Groups...	item.

Choosing the Group tool

d.	 Drag	“Groups...”	over	to	the	Toolbars	pane,	and	then	deposit	on	the	Groups	toolbar.

Dragging the Group tool to the Groups toolbar

 7 Customizing Toolbars and Button Icons 117

	 Notice	that	BricsCAD	fills	the	Macro	pane	with	preset	parameters.

Preset parameters for the Group tool

6.	 Click	OK.	Notice	the	new	toolbar	appears.

New toolbar with its solitary Group button

	 (If	you	do	not	see	the	toolbar,	you	may	need	to	turn	it	on	by	right-clicking	another	toolbar,	and	then	choosing	

BRICSCAD | Groups	from	the	shortcut	menu.)

7.	 Click	the	button	to	ensure	it	works	correctly:	the	Group	command	should	execute	by	displaying	the	Entity	

Grouping	dialog	box.

Tutorial: Alternative Method
There is a second method for populating toolbars. It involves a dialog box, and is useful if you are
not fond of dragging’n dropping. This method replaces Step 5 from above:

	5.	 With	the	blank	toolbar	created,	it’s	time	to	add	a	button.	Follow	these	steps:

a.	 In	the	Toolbars	pane,	right-click	the	Groups	item.

b.	 From	the	shortcut	menu,	choose	Append Tool.	

Using the Append Tool alternative

118 Customizing BricsCAD V19

c.	 Notice	the	Add	Tool	dialog	box.	Ensure	that	the	Select Available Tool	option	is	selected.

Choosing the Grouo tool

d.	 As	before,	you	can	find	the	Groups	command	under	Tools,	so	scroll	down	to	Tools,	and	then	open	the	

Tools	group	by	clicking	the	+	sign.

e.	 Choose	Groups,	and	then	click	OK.	Notice	that	BricsCAD	fills	the	Macro	pane	with	preset	parameters.

Group command added to the Groups toolbar

 7 Customizing Toolbars and Button Icons 119

Adding Controls, Flyouts, and Separators

Toolbars can contain more than just buttons. There are other elements available, including controls,
flyouts, and separators.

ABOUT CONTROLS (DROPLISTS)

Controls are better known as droplists . When the user clicks a control, BricsCAD drops a list of
options, such as names of colors or linetypes. You cannot customize controls.

Four controls are illustrated below, with the Color control showing its droplist. From left to right,
you see the controls for layers, colors, linetypes, and line weights.

Color control lists the names of colors

BricsCAD comes with these controls that you can add to and remove from toolbars:.

Color	—	droplist	of	default	and	recently-used	colors

Layer	—	droplist	of	layer	names	and	settings

Linetype	—	droplist	of	loaded	linetypes

Lineweight	—	droplist	of	standard	line	weights

Text Style	—	droplist	of	text	style	names

Dimension Style	—	droplist	of	dimension	style	names

Plot Style —	droplist	of	table	plot	style	names;	available	only	when	table-based	styles	are	enabled

Layer State	—	droplist	of	named	layer	states

Layer Filter —	droplist	of	named	layer	filters

UCS	—	droplist	of	named	UCSes

Perspective	—	slider	bar	that	toggles	perspective	mode	and	then	zoom	in	or	out	

Workspace	—	droplist	of	available	workspace	names

View	—	droplist	of	named	views

MLeader Style —	droplist	of	multileader	style	names

Visual Style	—	droplist	of	visual	style	names

120 Customizing BricsCAD V19

Tutorial: Adding Controls (Droplists) to Toolbars
To add a control to a toolbar, follow these steps:

1.	 In	the	Customize	dialog	box’s	Toolbars	tab,	right-click	an	existing	toolbar	name.	For	this	tutorial,	choose	Groups.

2.	 In	the	shortcut	menu,	choose	Append control.	

3.	 Notice	the	Add	Controls	dialog	box.	Choose	the	name	of	a	control,	such	as	“Color,”	and	then	click	OK.	

List of controls

	 (In	the	dialog	box	shown	above,	the	new	Workspaces	control	is	missing.	Until	this	bug	is	fixed,	you	can	ac-

cess	Workspaces	control	through	the	list	of	available	tools,	under	Controls.)

	 Notice	that	the	control	is	added	to	the	toolbar’s	list.	

Control added to toolbar

4.	 Click	Apply to	see	the	control	in	the	actual	toolbar.

Customizing Controls (Droplists)
You cannot create new controls, but you can customize one aspect of them: their width.

Pair of parameters for controls

 7 Customizing Toolbars and Button Icons 121

Here is what the parameters mean:

 Control	—	changes	the	control	displayed	by	the	toolbar.	Click	to	choose	another	one	from	the	drop	list:

Changing the control

 Width	—	specifies	the	width	of	the	control.	Click	to	enter	a	new	width,	which	is	measured	in	pixels.	The	

figure	below	shows	how	the	width	is	measured	on	docked	and	floating	toolbars.	The	width	measurement	

includes	the	gray	line	at	either	end	of	the	white	area.

Width of control
(pixels)

Width of control
(pixels)

Setting the width of the control

ABOUT FLYOUTS

Flyouts are sub-toolbars that “fly out” from a toolbar button, as illustrated below.

Flyout

Flyout indicator

Flyout, and flyout indicator

The presence of a flyout is indicated by the small black triangle in the lower right corner of a toolbar
button. Since flyouts are just toolbars within toolbars, you customize them kind of like a toolbar.

Tutorial: Adding Flyouts to Toolbars
To add flyouts, it’s a bit tricky. Here are the steps involved:

1.	 Right-click	an	existing	toolbar	name.	For	this	tutorial,	choose	Group.

122 Customizing BricsCAD V19

2.	 In	the	shortcut	menu,	choose	Append Flyout.	

Inserting a flyout

3.	 Notice	the	Append	Flyout	dialog	box.	Give	the	flyout	a	name,	and	then	click	OK.	(For	this	tutorial,	I	use	the	

name	“Flyout	Sample.”)

Naming the new flyout

	 Notice	that	the	flyout	appears	twice:	once	as	a	sub-toolbar	and	again	as	a	toolbar	in	its	own	right.

Double appearance of the flyout

4.	 You	can	now	populate	the	flyout	with	tools	in	two	place:	the	embedded	Flyout	Sample	sub-toolbar	or	the	

vestigial	Flyout	Sample	toolbar.	The	difference	between	them	is	as	follows:

	 Embedded	sub-toolbar	—	you	must	use	the	Append	tool;	you	cannot	use	the	Insert	tool	nor	can	you	

drag	commands	from	the	Commands	pane

	 Vestigial	toolbar	—	you	can	use	the	Insert	tool	and	can	drag	commands	from	the	Commands	pane.

	 Any	change	you	make	to	the	vestigial	toolbar	appear	in	the	embedded	toolbar.	I	have	no	idea	why	Bricsys	

does	things	this	way,	but	there	you	have	it.	I	recommend	using	the	vestigial	toolbar,	because	you	can	simply	

drag’n	drop.	Drag	tools	from	the	Command	pane	onto	the	Flyout	Sample	toolbar.

 7 Customizing Toolbars and Button Icons 123

5.	 To	add	more	commands	to	the	flyout,	repeat	step	5.	Notice	that	both	toolbars	contain	the	same	list	of	com-

mands.

6.		 Click	OK	to	apply	the	changes	and	then	view	the	changed	toolbar.

The customized Groups toolbar now looks something like this:

Toolbar with a button, a flyout, and a control

Because flyouts are simply toolbars, you can customize them just as you do toolbars. You cannot,
unfortunately, simply drag existing toolbars on top of others to turn them into flyouts.

ABOUT SEPARATORS

Separators are those lines that separate groups of buttons, as shown below. These are handy for
visually segregating related groups of buttons. There is nothing to customize about separators:
either you add them to a toolbar, or you do not.

Separator bars

Separators on a toolbar

Tutorial: Adding Separators to Toolbars
To add a separator to a toolbar, follow these steps:

1.	 Open	a	toolbar	by	clicking	the	+	button.	For	this	tutorial,	choose	Groups.

2.	 Select	a	tool	name,	such	as	the	Color	control.	The	separator	bar	is	added	in	front	of	the	selected	tool.

3.	 Right-click,	and	then	choose	Add separator.

Choosing to add a separator

124 Customizing BricsCAD V19

	 Notice	a	row	of	dashes	(------)	is	added	to	the	Groups	node,	indicating	the	position	of	the	separator	bar.	

Separator indicated by row of dashes

	 If	you	don’t	like	the	position	of	the	separator,	drag	it	elsewhere.

4.	 On	the	toolbar	itself,	a	vertical	gray	line	appears.		Click	Apply	to	see	the	change	to	the	toolbar.

That’s about as easy as it gets!

REMOVING BUTTONS, RENAMING AND DELETING TOOLBARS

You can remove buttons, rename toolbars, and delete them. To perform these actions, open up the
Customize dialog box, go to the Toolbars tab, and then choose the toolbar you want to edit.

Tutorial: Removing Buttons and Toolbars
To remove a button from a toolbar:

1.	 Right-click	a	button’s	name,	and	then	choose	Delete.	

Deleting a toolbar button

2.	 When	BricsCAD	asks	whether	you	are	sure,	choose	Yes.

Answering Yes (or No)

 7 Customizing Toolbars and Button Icons 125

3.	 Click	Apply to	see	the	toolbar	with	one	fewer	button.

The same procedure is used to delete toolbars: right-click a toolbar name, and then choose Delete
Toolbar.

Being cautious about deleting an entire toolbar

Tutorial: Renaming Toolbars and Buttons
You can change the names displayed by toolbars and buttons. To rename a toolbar, follow these steps:

1.	 Select	a	toolbar	in	the	Customize	dialog	box.

2.	 In	the	Macro	pane,	choose	the	Title	parameter.

3.	 Edit	the	name.	

Renaming a toolbar

4.	 Click	Apply to	see	the	name	change	on	the	toolbar’s	title	bar,	if	it	is	a	floating	toolbar.

Toolbar sporting its new name

You rename buttons in the same manner: select a button in the Customize dialog box, and then
edit its Title parameter.

Renaming a button

The name appears in the tooltip when you hover the cursor over the button.

126 Customizing BricsCAD V19

Customizing Buttons

Buttons are customized in a manner similar to that of toolbars. The parameters that can be changed
are described by the boxed text, above. To start customizing buttons, follow these steps:

1.	 Enter	the	Cui	command	to	open	the	Customize	dialog	box,	and	then	select	the	Toolbars tab.

2.	 Open	any	toolbar	by	clicking	the	+	next	to	its	name.	For	example,	open	Standard.

Selecting a button to customize

3.	 Select	a	command	name,	such	as	QNew.	Notice	the	button	parameters	that	appear	at	the	bottom	of	the	

dialog	box,	such	as	Title	and	Diesel.

Parameters that can be modified on toolbar buttons

With the Customize dialog box ready to modify buttons, let’s go on to see what can be done in
regards to this.

SIZING BUTTONS

You can have three sizes of buttons on toolbars: regular, large, and extra-large. Larger buttons are
easier to see on very-high resolution monitors, but smaller ones let you see more toolbars at
a time. The ToolbarIconSize variable affects all buttons on every toolbar uniformly; it has no
impact on ribbon buttons.

• Regular: 16x16 pixels

• Large: 32x32 pixels

• Extra-large: 64x64 pixels

The easiest way to change the size is to right-click a UI element, and then choose
Toolbar Size.

 7 Customizing Toolbars and Button Icons 127

MODIFYING BUTTON PARAMETERS

You can change the following button parameters:

 Title —	specifies	the	name	displayed	by	the	tooltip.	The	tooltip	appears	when	you	hover	the	cursor	over	the	

toolbar	button.

 Help —	specifies	the	help	text	displayed	on	the	status	bar.	The	text	appears	in	the	status	bar,	again	when	you	

hover	the	cursor	over	the	button.

 Command —	specifies	macro	executed	by	clicking	the	button.	This	macro	can	consist	of	a	simple	command	

name,	like	line,	or	multiple	command	names	within	a	lengthy	series	of	instructions.

 Image —	specifies	the	picture	(a.k.a	icon)	displayed	by	the	button.	You	can	use	icons	provided	by	Bricsys	or	

use	your	own.

I recommend that you leave Diesel and Tool ID fields alone. Diesel, because its functions are carried
out by the Command field; ToolID, because it’s best not muck about with how BricsCAD identifies
buttons internally.

Tutorial: Editing the Title Name and the Help String
To change the name displayed by the button’s tooltip, follow these steps:

1.	 Click	the	field	next	to	the	Title	parameter.

Editing the Title parameter

2.	 Edit	or	replace	the	text.	

3.	 Click	Apply	to	make	the	change	stick.

Follow the same steps to change the help text displayed by the status bar: Click the Help field, edit
the text, and then click Apply.

Editing the help text

Tutorial: Changing the Command Macro
To change the macro that is executed when you pick the toolbar button, follow these steps:

1.	 Click	the	field	next	to	the	Command	parameter.

Editing the command’s macro

128 Customizing BricsCAD V19

2.	 Enter	a	new	macro.	If	all	you	want	to	is	to	execute	a	single	command,	then	use	this	template:
 ^c^c_command

	 Replace	“command”	with	the	command	name	of	your	choice.	For	example,	to	execute	the	PLine	command,	

then	enter ^c^c_pline. (For	details	on	writing	macros,	see	the	chapter	on	“Writing	Macros	and	Diesel	Code.”)

3.	 Click	Apply.

TIPS After	you	change	a	parameter,	it	is	shown	in	boldface	to	remind	you	that	it	has	changed.	The	bold-
facing	goes	away	after	you	press	Apply.	
	
Click	the	Apply button	to	see	the	effect	of	changes	you’ve	made	to	the	button(s).

Although	it	is	not	explicit,	you	can	copy	and	paste	text	in	the	parameter	fields,	as	follows:	
	 •	 To	copy:	select	text,	and	then	press	Ctrl+C.	
	 •	 To	paste:	place	cursor,	and	then	press	Ctrl+V.	
Ctrl+X also	works	to	cut	text,	as	does	Ctrl+Z	for	undo,	Ctrl+Y	for	redo,	Ctrl+A	to	select	all	text,	and	Del to	
delete.

Tutorial: Replacing Button Images
To change the picture displayed by the button, follow these steps:

1.	 Pick	the	field	next	to	the	Image	parameter.		

Accessing the button editor

2.	 Notice	the	 	button	at	the	end	of	the	field.	Click	it	to	access	the	Tool	Image	dialog	box.	This	dialog	box	offers	

four	ways	to	access	collections	of	pictures	(or	icons):

 Builtin —	lists	images	available	within	BricsCAD.	Scroll	through	the	list,	choose	an	image,	and	then	click	OK.	

Choosing an icon from those provided by BricsCAD

 Bitmap file —	selects	an	image	on	your	computer.	This	takes	two	steps:

 7 Customizing Toolbars and Button Icons 129

a.	 Choose	the	size:

	 •	One Image File —	standard	size	only	(16x16	pixels)

	 •	Small and Large Image Files	—	both	standard	and	large	(24x24	pixels).	

b.	 Click	the	 	button.

c.	 From	the	Tool	Image	dialog	box,	Chose	choose	a	file	in	BMP	(bitmap),	GIF,	JPEG,	or	PNG	format.	The	im-

age	is	automatically	resized	to	fit	the	area	of	the	button.	

Choosing an icon from a file

d.	 Click	Open,	and	then	repeat	for	the	large	image,	if	necessary.

e.	 Click	OK	.

 Resource —	chooses	an	image	from	a	resource	file.	These	.dll or	.exe files	are	used	by	Windows	to	run	pro-

grams,	and	often	contain	a	small	collection	of	icons.	At	time	of	writing	this	book,	this	option	did	not	work,	

and	so	all	you	can	do	is	click	Cancel.

Choosing an icon from a resource file, if any

130 Customizing BricsCAD V19

 None —	removes	the	image	from	the	button.	In	this	case,	the	button	is	blank.	

Specifying no icon for the button

BricsCAD does not have a built-in icon editor. Instead, you can use a raster editor like PaintShop
Pro to create images, and then use the Bitmap File option to load them into BricsCAD.

Writing Macros
and Diesel Code

When you click a button or make a menu selection, BricsCAD behind the scenes executes a
macro. This is a series of one or more commands assigned to the button or menu item.

You can change the macros that lie behind buttons, menu selections, mouse clicks, and other ac-
tions. Toolbars, menus, and other areas of BricsCAD use the same format for macros, and so when
you learn to write a macro for one, then you can write macros for the others. There is one differ-
ence, however: menus have some more user interface options than the others, and so have more
macro options.

Some macros use Diesel, a simplistic programming language. It is used for special effects, such
as toggling check marks in front of menu items. The coding used by Diesel is really, really arcane.
Fortunately, the same bits of code can be used over again, and so it is enough to recognize what
the code does.

 In this chapter, you learn how to write macros, and then how to add more power to macros through
one-line programs written in Diesel.

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Learning the macro syntax

• Writing macros specific to menus

• Coding with Diesel

• Cataloging Diesel functions

CHAPTER 8

132 Customizing BricsCAD V19

QUICK SUMMARY OF METACHARACTERS IN MACROS

Macros use command and option names, metacharacters, Diesel code, and LISP functions in menus, toolbars, and other
areas of the Customize dialog box. Metacharacters consist of punctuation that represents actions. Here are the metacha-
racters used by BricsCAD:

^— (carat) represents the Ctrl key. These following control-key combinations are valid in macros:

^B Toggles snap mode
^C Cancels the current command
^D Toggles coordinate format
^E Changes to the next isometric plane
^G Toggles the grid display
^O Toggles orthographic mode
^S Selects the entity under the cursor
^T Toggles tablet mode

 ; — (semi-colon) represents the Enter key.

 ' — (single quote) forces the use of commands in transparent mode.

 _ — (underscore) forces the use of English versions of command names.

 - — (dash) forces the use of command-line versions of commands.

 \ — (backslash) pauses the macro for user input.

 (— (open parenthesis) signals the start of a LISP function.

 $(— signals the start of a Diesel statement.

) — (close parenthesis) signals the end of LISP functions and Diesel statements.

The following metacharacters are used only by menu macros:

Check mark
.! metacharacter

Underscore
& metacharacter

Separator line

 $M — signals the start of a complex macro.

 .! — displays a check mark, to indicate the toggle is turned on.

 ~ — (tilde) grays out a menu item, to indicate it is not available.

 & — (ampersand) signals the accelerator key, to access menu items with the Alt key.

 8 Writing Macros and Diesel Codes 133

Simple Macros

A simple macro consists of a single command, prefixed by some unusual-looking characters. For
instance, here is the macro attached to the Line button in Draw toolbar:
 ^c^c_line

The exact same macro is used for toolbars and macros, as shown below by Line in the Draw menu:

A basic macro shown in the Command property

The ^c^c_ characters in the macro have the following meanings:

^c — is	a	control character.	It	imitates	pressing	Esc on	the	keyboard,	canceling	the	command	currently	in	prog-

ress.	The	carat	symbol	(^)	alerts	BricsCAD	that	the	character	following	is	a	control	character,	and	not	part	

of	a	command	name	or	an	alias.	

	 (What	does	‘c’	have	to	do	with	the	Esc key?	Back	in	the	1980s	and	1990s,	when	desktop	computers	used	

MS-DOS	for	their	operating	system,	users	pressed	Ctrl+C	to	cancel	a	command;	the	C	was	short	for	“cancel.”	

With	Windows,	Microsoft	changed	the	meaning	of	Ctrl+C to	mean	“copy	to	Clipboard,”	but	in	macros,	it	

continues	to	mean	“cancel.”)

^c^c	—	most	macros	start	with	two	^cs	because	many	BricsCAD	commands	are	two	levels	deep.	Extra	^cs	do	

no	harm;	indeed,	older	releases	of	BricsCAD	prefixed	all	macros	with	three	^cs.	to	handle	commands	like	

PEdit,	whose	options	can	go	three	levels	deep.

	 When	a	macro	is	transparent (starts	with	the	'	apostrophe),	then	you	can’t	prefix	it	with	the	Cancel charac-

ters;	more	on	this	later	in	this	section.

_	—	the	underscore	is	a	convention	that	internationalizes the	command.	Prefixing	the	command	name	with	the	

underscore	ensures	the	English-language	version	of	the	command	always	works,	whether	used	with	a	Ger-

man,	Japanese,	or	Spanish	versions	of	BricsCAD.

line — is	the	name	of	the	command	to	be	executed.	In	macros,	you	type	BricsCAD	commands	and	their	options	

exactly	the	way	you	would	type	them	on	the	keyboard	at	the	‘:’	command	prompt.

	 Nothing	is	needed	at	the	end	to	terminate	the	command.	BricsCAD	automatically	does	the	“pressing	Enter”	

for	you.	

134 Customizing BricsCAD V19

QUICK SUMMARY OF DIESEL FUNCTIONS

The following Diesel functions are supported by BricsCAD:

MATH FUNCTIONS

+ Addition
- Subtraction
* Multiplication
/ Division

LOGIC FUNCTIONS

= Equal
< Less than
> Greater than
!= Not equal
<= Less than or equal
>= Greater than or equal
and Logical bitwise AND
eq Determines if all items are equal
if If-then
or Logical bitwise OR
xor Logical bitwise XOR

NUMERIC CONVERSION FUNCTION

fix Truncates real numbers to rounded-down integers
angtos Formats angles (short for angle to string)
rtos Formats numbers with units (short for real to string)

STRING (TEXT) FUNCTIONS

index Extracts one element from a comma-separated series
nth Extracts the nth element from one or more items
strlen Returns the number of characters in the string (short for string length)
substr Returns a portion of a string (short for sub string)
upper Converts a text string to uppercase characters

 SYSTEM FUNCTIONS

edtime Formats the system time.
eval Passes a string to Diesel.
getenv Gets the value of an environment variable.
getvar Gets the value of a system variable.
linelen Returns the length of the display

 8 Writing Macros and Diesel Codes 135

TIP Macros	are	case-insensitive.	This	means	that	the	characters	in	macros	can	be	upper	or	lowercase,	or	
mixed	case;	it	matters	not	to	BricsCAD.	The	following	have	the	same	effect:	
	 ^C^_LINE
 ^c^c_line
 ^C^c_Line.

TRANSPARENT COMMANDS IN MACROS

Most macros start by cancelling existing commands. But sometimes you want to use a command
transparently; i.e, during another command. For example, you might want to zoom into the draw-
ing during a command.

Transparent commands are indicated by the apostrophe prefix ('), like this:
 '_zoom

Dashed Commands
A few commands in BricsCAD start with a dash; these are ones that operate at the command line,
instead of displaying a dialog box.

One example is the View command: View displays a dialog box, while -View display prompts at the
command line. To force View to display its prompts at the command line, enter this:
^c^c_-view

OPTIONS & USER INPUT

Macro can specify commands options, as well as wait for input from users.

Options
Options are just like commands; you just write out the option name. The only thing to watch is that
you should use semicolons (;) to separate options from commands and each other.

Here is an example with the Layout command and its New option:
^c^c_layout;_new

Notice that options can also receive the underscore (_) prefix to internationalize them.

You can spell out the name of the option in full (_new) or use the approved abbreviation, such as
_n). Recall that approved abbreviations are indicated by capitalized letters in the option names
displayed at the command prompt, such as these:
: layout
Enter layout option [Copy/Delete/New/Rename/Set/SAve/Template/? to list] <Set>: n

You can use “n” for the New option and “s” for the Set option, but must use “sa” for the Save option.

It is perfectly valid to use “?” (as in “? to list”) in macros, but you cannot use spaces, because these
are interpreted as pressing Enter.

136 Customizing BricsCAD V19

Pausing for User Input
To allow users to input data, macros employ the backslash character (\). This forces the macro to
wait for the user to do something. Commonly, the expected action is for the user to input one of these:

•	 Pick	a	point	on	the	screen,	or

•	 Enter	x,y-coordinates	at	the	keyboard

The macro waits for the user to enter the center point of the circle; the circle is always 1 unit in radius:
^C^C_circle;\1

When you execute this macro, such as from a menu pick or toolbar button, the following occurs at
the command line:

Command Prompt Comments

: _circle Macro begins the command

2Point/.../<Center of circle>: (User picks a point) Macro waits for user to pick a
 point in the drawing (or enter
 a coordinate pair)

Diameter/<Radius> <5>: 1 Macro enters 1 (for the radius)
 and then ends the command

But the expected action can be other things, too, depending on the command. Options in the Rotate
command expect an angle (the user picks two points on the screen, or enters a single number), in
the Text command a line of text (the user enters one or more words), and so on.

When a command expects more than one input from the user, you can type several backslashes in
a row, as you see next.

Combining Options and Pauses
Options and pauses can be combined together. In this example, the macro draws an ellipse after
the user specifies a center point and the rotation angle:
 ^c^c_ellipse;_c;_r

Here is what the code means:

 ^c^c	cancel	any	other	command	that	might	be	active	at	the	time.

 Ellipse is	the	name	of	the	command,	while	the	underscore	(_)	prefix	internationalizes	it.

 ; (semicolon)	is	just	like	pressing	Enter or	the	spacebar	on	the	keyboard.

 C is	the	Ellipse	command’s	Center option.	Just	as	you	enter	an	abbreviation	for	options	at	the	keyboard,	so	

too	you	can	use	the	same	abbreviations	in	macros	—	or	you	can	spell	out	the	entire	option	name,	such	as	

“Center.”

 \ (backslash)	pauses	the	macro,	waiting	for	the	user.	Two	backlashes	in	a	row	means	that	the	macro	expects	

the	user	to	make	two	picks.

	 R	is	short	for	the	Ellipse	command’s	Radius option.

 8 Writing Macros and Diesel Codes 137

Let’s	look	again	at	the	macro,	this	time	in	parallel	with	the	command’s	prompts:

Macro Command Prompt

^C^C (Press Esc, Esc.)

_ellipse; : ellipse

; (Press Enter.)

_C; Arc/Center/<First end of ellipse axis>: c (Press Enter.)

\ Center of ellipse: (Pick point.)

\ Endpoint of axis: (Pick point.)

_R Rotation/<Other axis>: r (Press Enter.)

 Rotation around major axis: (Pick point.)

A final semicolon (i.e. Enter) and backslash (i.e. pause for user input) are not needed at the end of
the macro, because the macro no longer needs to wait for the user.

TIPS	 You	can	include	aliases,	Diesel	code,	and	LISP	routines	in	toolbar	and	menu	macros.	
	
There	is	no	“debugger”	for	macros,	and	so	you	have	to	figure	out	the	errors	on	your	own.

Other Control Keys
You’ve met ̂ C, the control key for cancelling a command. BricsCAD also supports all these control-
key combinations using the ^-prefix:

Control Key Meaning Command Equivalent

^B Toggle snap mode _’snap;_t
^C Cancel command Press Esc
^D Toggle coordinates _’coordinate;_t
^E Change isometric plane _’isoplane
^G Toggle grid display _’grid;_t
^O Toggle orthographic mode _’orthogonal;_t
^S Selects the entity under the cursor . . .
^T Toggle tablet mode _’tablet;_t

Think of these control-key combos as abbreviations, like aliases. You can use these control keys as
shortcuts in macros all by themselves, like this:

Macro consisting solely of a Ctrl-key macro

138 Customizing BricsCAD V19

MENU-SPECIFIC METACHARACTERS

Menus use additional metacharacters that are not needed by toolbars. Here is the complete set:

Metacharacter Meaning

 .! Displays a check mark to indicate the toggle is turned on .
~ (tilde) Grays-out menu item to indicate it is not available .
& (ampersand) Enables accelerator key to access menu item from the keyboard .

Other Metacharacters
_ (underscore) Internationalizes the command or option .
‘ (quote) Starts a command transparently .
\ (backslash) Waits for user input .
; (semicolon) Equivalent to pressing Enter or the spacebar .
$(Starts a Diesel statement .
(Starts a LISP routine .

TIP	 Some	of	AutoCAD’s	metacharacters	don’t	work,	such	as	[]	,	+	,	\t	,	and	*.

Diesel Coding

Sometimes you need additional code to help macro perform decisions. For example, the View menu
lists three items that have check marks beside them: Command Bar, Status Bar, and Scroll Bars.
When the three bars are displayed, the check marks appear in the menu; when not displayed, the
check marks are not shown.

Left: Check marks indicate UI elements are turned on.

Right: No check marks mean the elements are turned off.

It is easy to get a menu to display the check mark: just add the !. metacharacter to the macro. It is
difficult, however, to get BricsCAD to do the actual turning on and off, because the display of check
marks is a logical function. It should appear in the menu only when the UI element is turned on.
This is where Diesel comes in.

ABOUT DIESEL

Diesel has two purposes in macros: one is for making decisions, and the other is for customizing
the status bar. The name is short for “direct interactively evaluated string expression language,”
and its programming logic is as clear as the acronym’s meaning — as clear as mud.

 8 Writing Macros and Diesel Codes 139

Diesel has an unusual format for a macro language. Every function begins with a dollar sign and a
parenthesis, like this:
 $(function,variable)

The purpose of the initial $-sign is to alert BricsCAD that a Diesel expression is on its way, just as
the (symbol alerts BricsCAD that a LISP expression is coming up. The $ symbol is often used by
programmers to indicate a string of text.

The opening and closing parentheses signal the beginning and end of the Diesel function. Func-
tions can be nested, where one Diesel function is inside the parentheses of a second one. You use
nesting to have one function evaluate the result of the second one. Diesel is completely reentrant.

Because Diesel programs consist of just one line — at most! — nesting is the only way to carry out
more than one function during a macro.

For some functions, Diesel can operate on as many as nine values at a time, such as adding several
values together. The closing parenthesis alerts Diesel to the end of the list of values.

BricsCAD provides a catalog of 26 Diesel functions. Most of them use at least one variable, some
as many as nine. A comma always separates the function name from its variable(s), as well as the
variables themselves. Diesel tolerates no spaces.

Diesel functions can be run at the command line, in toolbar and menu macros, in LISP code, and in
other areas of BricsCAD, such as the status bar. To work in the status bar, you use the ModeMacro
command, followed by the Diesel expression.

(John Walker, the Autodesk programmer who created Diesel, notes that additional functions, such
as setvar and time, could be implemented but never were. He provides instructions for accessing
the Diesel source code and recompiling it with other functions at http://www.fourmilab.ch/diesel/.
He named Diesel as “Dumb Interpretively Executed String Expression Language.”)

HOW TO TOGGLE CHECK MARKS

BricsCAD primarily uses Diesel to toggle check marks in menus:

•	 Check	mark	 	means	the	option	is	turned	on

•	 No	check	mark	means	the	option	is	turned	off

To switch between the two states, BricsCAD uses the .! metacharacter in code that looks like this:
 $(if,$(=,$(getvar,FILLMODE),0),,!.)

It may look weird, but don’t worry: you don’t need to know how to write that code from scratch,
ever. All you need to do is: (a) copy and paste it, and then (b) change just one word (FILLMODE,
in this case).

Here is what the Diesel code says: “If the value of FillMode equals 0, display nothing; otherwise, dis-
play the check mark.” BricsCAD uses the .! metacharacter to instruct menus to display check marks.

140 Customizing BricsCAD V19

Here is another way of looking at the Diesel code. This is called “parsing,” where each line of code
is given its own, indented line:
$(if, If...
 $(=, ...equal to
 $(getvar, ...get the value of
 FILLMODE), ...system variable FillMode
 0) ... (equal to) zero
 , ... then display nothing.
 ,!. Otherwise, display the check mark.
) End of diesel statement.

Here is what the code does: it checks the value in system variable FillMode. If the value is 0, then
the check mark is not displayed; if the value is 1, then the check mark is displayed.

To use this code for other menu items, copy and paste the text, and then change the name of the
system variable. For example, to add a check mark toggle to the Limits command, use LimCheck
system variable. Simply copy, paste, and edit the Diesel string to make it look like this:
 $(if,$(=,$(getvar,LIMCHECK),0),,!.)

Reuse the same code for the Grid command, which uses the GridMode system variable:
 $(if,$(=,$(getvar,GRIDMODE),0),,!.)

So, you don’t really need to know what the Diesel code does; you just need to know which word
to change!

Toggling Grayouts
To toggle the color of menu text between black and gray, you use the tilde (~) character:

•	 Black	text	means	the	menu	item	is	available

•	 Gray	text	means	the	menu	item	is	unavailable

For example, BricsCAD uses the tilde in Diesel code to check for valid sublicenses. If you’ve paid for
the Pro and Platinum versions of BricsCAD, then you get access to solids modeling and Visual Basic
programming. If not, then no. (Bricsys pays to license the ACIS and VBA technology from Spatial
Technology and Microsoft, hence the higher cost of the Pro and Platinum versions.)

The following code is used to check for licenses:
 $(if,$(=,$(and,$(getvar,LICFLAGS),0x1),0),~,)

If nonzero, then the submenu is available for your use. If zero, then the menus are grayed out. The
read-only LicFlags system variable contains a bitcode that signals which licenses are valid:

LicFlags Meaning

1 Microsoft license for Visual Basic programming
2 Spatial license for 3D solid modeling and editing, ACIS import and export, regions
4 Bricsys license for Platinum edition

 8 Writing Macros and Diesel Codes 141

REPORTING VALUES OF SYSTEM VARIABLES

Being the hackers, er, customizers that we are, we won’t stop at toggling mere check marks or text
colors. We’ve figured out how to use Diesel to do more.

For instance, to display the values of system variables, we can use the $(getvar function. This Diesel
function gets the value of a system variable, and then displays it in the menu.

In the following tutorial, you change the Elevation menu item so that it reports its current value.
(Elevation is found in the Settings menu.) The figures below illustrate how the menu looks before
and after this tutorial. In the “after” picture, Elevation reports its current value of 10.9000:

Left: The default version of Elevation in the Settings menu; right: Elevation modified to show value, using Diesel code

To modify a menu item so that it reports values, follow these steps:

1.	 Enter	the	Cui alias,	and	then	choose	the	Menus tab.

2.	 Expand	the	Settings node,	and	then	select	the	Elevation item.

Elevation command in the Customize dialog box

3.	 Shift	your	attention	to	the	Menu	Item	area,	the	macro	pane	at	the	bottom	of	the	dialog	box.	Click	the	field	

next	to	Diesel,	and	then	enter	the	following	code:
 $(getvar,elevation)

142 Customizing BricsCAD V19

	 This	piece	of	Diesel	code	gets	the	value	of	the	Elevation	system	variable,	and	then	displays	it.

Adding Diesel code to the macro

4.	 Click	OK to	apply	the	change	and	exit	the	Customize	dialog	box.

5.	 Choose	the	Settings menu,	and	then	notice	the	change	to	the	Elevation	item.	It	will	probably	be	prefixed	

with	0.0000	—	the	current	elevation.

6.	 Choose	Elevation	to	run	the	command,	and	then	enter	a	different	value,	like	1.23:
 : elevation
 Enter current new value for ELEVATION <0.0000>: 1.23

7.	 Choose	the	Settings menu	again.	Notice	that	the	value	next	to	Elevation	has	changed	to	1.2300.	

Actual elevation value added to menu

You’ve made the menu more useful by customizing the display of the Elevation item! But there is
a small problem with the display: it doesn’t look very good, with the “1.2300” jammed up against
the word “Elevation.”

In this next tutorial, you fix the spacing problem:

1.	 Reenter	the	Cui alias,	and	then	return	to	the	Settings | Elevation	item.

2.	 Edit	the	field	next	to	Title so	that	it	changes	from
 Ele&vation

	 to		this:
 = Ele&vation

	 Just	add	a	space,	equals	sign,	and	another	space.

Enhancing the macro

3.	 Click	OK to	exit,	and	try	the	Settings menu	again.	That	looks	better!

Enhanced look of the menu item

The number will always appear in front of the word. The reason? Recall that the Diesel code was
meant to toggle check marks, which appear in front of words. Since displaying values is a hack,

 8 Writing Macros and Diesel Codes 143

we are stuck with the backward looking “1.2300 = Elevation.” There is, however, a workaround, as
described later under “How to Deal with Two Sysvars.”

APPLYING VARIABLES EVERYWHERE

You can apply the same sort of change to other items in the Settings menu. Here are the names of
the system variables for some of them:

Settings Menu System Variable(s) Diesel Code

Entity Snap Precision Aperture $(getvar,aperture)
Base Point InsBase $(getvar,insbase)
Drawing Limits* LimMin, LimMax ($(getvar,limmin),$(getvar,limmax))
Thickness Thickness $(getvar,thickness)

After the changes are applied, the Settings menu looks like this:

Additional menu items reporting values

There are some special things to notice about the menu illustrated above. Let’s go through them.

How to Add Units
The value of 10 shown for Entity Snap Precision is somewhat meaningless, so I added the word
“pixels” to the Title parameter, like this:
 pixels = Entity Snap &Precision

Adding units to values

144 Customizing BricsCAD V19

How to Solve Check Marks that Conflict with Icons
I found that the image (icon) for Fill seems to override the check mark. In the figures below, which
is on and which is off?

Left: Fill is ???

Right: Fill is ???

Here’s why there’s a problem: when a toggle is on, the icon gets a thin black border, which I find is
easy to miss with the Fill, because it already has a black border. This is why I prefer the bold-looking
check mark over the essentially-invisible border.

One solution is to remove the icon from the Image field:

Removing the icon from the menu item

Now the check mark is prominent:

Left: Fill is off with blank icon

Right: Fill is on with checkmark icon

How to Deal with Two Sysvars
At first, I could not get the Drawing Limits item to work correctly. It extracts values from two
system variables, LimMin and LimMax, which is tricky. After some fiddling around, I found that I
could get the Diesel code to work by placing part of it in the Title parameter, like this:

Code for reporting two variables

Notice that the pieces of Diesel code are surrounded by parentheses, and separated by a comma.
This makes the pair of 2D coordinates more legible.
 &Drawing Limits = ($(getvar,limmin)), ($(getvar,limmax))

 8 Writing Macros and Diesel Codes 145

This macro displays the limits as follows:
 (0,0), (12,9)

Menu item reporting the values of two variables

Reporting Through Diesel
Other menus can take advantage of Diesel’s reporting feature. Here are examples of what’s possible:

•	 File | Close can	report	the	name	of	the	drawing	file	with	the	DwgName system	variable.

•	 Edit | Undo	can	report	the	name	of	the	command	being	undone	with	CmdName.

•	 View | Set Viewpoint	can	report	the	coordinates	of	the	current	view	with	VPointX, VPointY,	and	VPointZ.

•	 Insert| Insert Block can	report	the	name	of	the	last-inserted	block	with	InsBase.

•	 Draw | Circle can	report	the	current	radius	with	CircleRad.

•	 Dimension | Restore Dimension Style can	report	the	name	of	the	current	dimensions	style	with	DimStyle.

•	 Modify | Fillet can	report	the	current	fillet	radius	with	FilletRad.

•	 Settings | TextStyle can	report	the	name	of	the	current	text	style	with	TextStyle.

•	 Tools | Inquiry | Time Variables can	 report	 the	 duration	 the	 drawing	 has	 been	 open	with	TdInDwg.

Formatting Units
In the figure above, the values of Base Point and Drawing Limits are shown in architectural units.
This should come as a surprise you, because normally they would be displayed by default as deci-
mal units. In this case, I cheated: I didn’t use Diesel, but simply changed format of the units with
the Units command.

This example illustrates that some values in menus are affected by the current setting of Units.
Other values, such as Elevation and Thickness, are, however, still shown by four decimal places.
This can be overridden using Diesel code, as described next.

146 Customizing BricsCAD V19

Formatting Diesel Output

You can apply formatting to the numbers and text generated by Diesel. Numbers and angles can
be formatted for units, while text can be converted to uppercase, or be truncated.

FORMATTING NUMBERS

Diesel provides functions for rudimentary formatting of numbers and coordinates.

Fix
The Fix function truncates real numbers to rounded-down integers. For example, if a Diesel cal-
culation returns the value of 5.321, then applying the Fix function changes the value to 4. “Round-
ing down” means that a value like 5.987 (which you would expect to be rounded up to 6) is also
truncated to 4:
$(fix,4.321) returns 5

Index
The Index function extracts a single coordinate value from a comma-separated series. For example,
the BasePoint system variable returns a x,y,z coordinate like this:
(4,11,16)

You use the Index function to extract the x coordinate from (4,11,16), like this:
$(index,0,($getvar,basepoint)) returns 4

Notice that Diesel uses a radix of 0, meaning it starts counting with 0, instead of 1 as we humans
do. Thus, the 0 in the function above extracts the first coordinate, x:

Index Number Coordinate Extracted

 0 x
 1 y
 2 z

(When we count, we count like this: 1, 2, 3...; but when Diesel counts, it counts like this: 0, 1, 2... .
This makes counting in Diesel complex, because you have use a digit that’s one less than what you
would expect to use.)

Nth
The Nth function extracts the nth element from one or more items. Here, the 2 returns the third
element of the string of numbers, 8 (because Diesel starts counts with 0, not 1).
$(nth,2,10,9,8,7) returns 8

Both Index and Nth work with numbers and text.

 8 Writing Macros and Diesel Codes 147

Rtos
The Rtos function formats numbers with units. The function name is short for “real to string,” but
has nothing to do with strings! (A similar function, Angtos, formats angles.) Here is how to use it.
Say a drawing has units that are architectural, but you want Diesel to report numbers in decimal
notation, with one decimal place of accuracy. In the following example, the Rtos function formats
the first chamfer distance, ChamferA:
$(rtos,($getvar,chamfera),2,1)

Where:

	 ($getvar,chamfera) — name	of	the	system	variable,	the	source	of	the	real	number	that	you	want	to	format.

	 2 —	format	of	the	number,	decimal	in	this	case.	Diesel	uses	the	same	code	as	LUnits;	see	the	table	below	for	

more	info.	When	you	leave	out	this	digit,	BricsCAD	reads	the	value	found	in	the	LUnits	(linear	units)	sysvar.

Mode (LUnits) Number Display Format

1 Scientific notation (exponential format)
2 Decimal format (metric)
3 Engineering format (feet and decimal inches)
4 Architectural format (feet and fractional inches)
5 Fractional format (fractional inches, no feet)

	 1 —	precision	of	the	number,	one	decimal	place	in	this	case.	When	this	digit	is	left	out,	then	the	value	of	Lu-

Prec	(linear	units	precision)	is	used	by	default.	The	range	is	0	to	8,	meaning	zero	to	eight	decimal	places,	but	

the	precision	itself	varies	depending	on	the	units	of	the	angle,	as	shown	by	the	table	below:

Angular Units Range of Precisoin (AuPrec)

Decimal 0 to 0 .00000000
DMS 0d to 0d00’00 .0000”
Grads 0g to 0 .00000000g
Radians 0r to 0 .00000000r
Surveyor’s units N0dE to N0d00’00 .0000”E

Formatting Angles
Angles are formatted through the Angtos function, short for “angle to string.” In this example, the
Angtos function formats the chamfer angle, ChamferD:
$(angtos,($getvar,chamferd),2,1)

Where:

	 ($getvar,chamferd) — specifies the	name	of	the	system	variable,	the	source	of	the	angle.

	 2 —	specifies	the	format	of	the	angle,	grads	in	this	case.	Diesel	uses	the	same	code	as	the	AUnits	(angle	units)	

system	variable.	When	this	digit	is	left	out,	BricsCAD	reads	the	current	value	in	AUnits.

Mode (AUnits) Displays Angles As

0 Decimal degrees (360 .0 degrees per circle)
1 Degrees, minutes, seconds
2 Grads (400 grads per circle)
3 Radians (2pi radians per circle)
4 Surveyor’s units (N and E coordinates)

	 1 —	specifies	the	precision	of	the	angle,	one	decimal	place	in	this	case.	When	this	digit	is	left	out,	then	AuPrec	

(angular	units	precision

148 Customizing BricsCAD V19

FORMATTING TEXT

Diesel provides the most rudimentary of functions for formatting text.

Upper
Diesel includes an Upper function that converts the entire text string to uppercase. This useful for
comparing two text strings, to ensure they are identical. There is no “Lower” function.

StrnLen
The StrLen function determines the number of characters in a string, while the Substr extracts a
portion of a string. Details on these and other functions are found later in this chapter.

Other types of text formatting, such as boldface and coloring, are not available in Diesel.

VARIABLES IN DIESEL

You can use variables with Diesel functions. When you have the result of one calculation, you may
wish to store it for use later on by another second calculation — kind of like using a memories on
a calculator. Here is how you accomplish this:

1.	 First,	you	use	the	SetVar command	to	store	the	value	in	one	of	the	user	system	variables,	such	as	UserR1.	

(This	must	be	done	outside	of	the	menu	macro.)
 Command: setvar
 Enter variable name or [?]: userr1
 Enter new value for USERR1 <0.0000>: 3.141

2.	 Then	you	can	access	it	inside	the	menu	macro	with	the	$(getvar	function:
 $(+,$(getvar,userr1),25)

The following user system variables can be used with Diesel:

• UserR1 through	UserR5 to	store	reals	(numbers	with	decimals)

• UserI1 through	UserI5 to	store	integers	(numbers	without	decimals)

• UserS1 through	UserS5 to	store	strings	(text)

Actually, you can store anything you want in these 15 sysvars; it’s just handy that they are labelled
with R (for real), I (for integer), and S (for string). Careful though: the contents of these sysvars
are wiped clean when BricsCAD closes. The next time you start BricsCAD, their values are all 0.

 8 Writing Macros and Diesel Codes 149

Complete Catalog of Diesel Functions

Here are details on all Diesel functions supported by BricsCAD.

MATH FUNCTIONS

Diesel supports the four basic arithmetic functions.

+

The + (Addition) function adds together up to nine numbers:
 $(+,2,3.4,10,5) returns 20.4

The function works with as little as one value, adding the value to 0:
 $(+,2) returns 2

-

The - (Subtraction) function subtracts as many as eight numbers from a ninth. For example, the
following equation should be read as 2 - 3.4 - 10 - 5 = -16.4:
 $(-,2,3.4,10,5) returns -16.4

As another example, this equation should be read as 2 - 0 = 2:
 $(-,2) returns 2

*

The * (Multiplication) function multiplies together up to nine numbers.
 $(*,2,3.4,10,5) returns 340

When you store the value of pi (3.141) in UserR1, you can perform calculations that involve circles.
For instance, recall that to find the area of a circle the formula is pi * r2. Diesel doesn’t support
squares or exponents, so you need to multiple r by itself: pi * r * r.

To find the area of a 2.5”-radius circle:
 $(*,$(getvar,userr1),2.5,2.5) returns 19.63125

/

The / (Division) function divides one number by up to eight other numbers.
 $(/,2,3.4,10,5) returns 0.01176471

This one reads as 2 / 3.4 / 10 / 5 = 0.1176471.

150 Customizing BricsCAD V19

LOGIC FUNCTIONS

The logic functions test to see if two (or more) values are equal (or not).

=

The = (Equal) function determines if two numbers (or strings) are equal. If so, the function returns
1; if not, it returns 0.
 $(=,2,2) returns 1

 $(=,2,3.4) returns 0

<

The < (Less than) function determines if one number is less than another. If so, the function returns
1; if not, it returns 0.
 $(<,2,2) returns 0

 $(<,2,3.4) returns 1

>

The > (Greater Than) function determines if one number is greater than another. If so, the function
returns 1; if not, it returns 0.
 $(>,2,2) returns 0

 $(>,2,3.4) returns 1

!=

The != (Not Equal) function determines if one number is not equal to another. If not equal, the
function returns 1; if equal, it returns 0.
 $(!=,2,2) returns 0

 $(!=,2,3.4) returns 1

<=

The <= (Less Than or Equal) function determines if one number is less or equal than another. If so,
the function returns 1; if not, it returns 0.
 $(<=,2,2) returns 1

 $(<=,2,3.4) returns 1

 $(<=,9,0.5) returns 0

>=

The >= (Greater Than or Equal) function determines if one number is greater than or equal to
another. If so, the function returns 1; if not, it returns 0.
 $(>=,2,2) returns 1

 $(>=,9,0.5) returns 1

 $(>=,2,3.4) returns 0

 8 Writing Macros and Diesel Codes 151

AND

The and (Logical Bitwise AND) function returns the bitwise logical “AND” of two or more integers.
This function operates on up to nine integers.

EQ

The eq (Equality) function determines if two numbers (or strings) are equal. If identical, the func-
tion returns 1; otherwise, it returns 0.
 $(eq,2,2) returns 1

 $(eq,9,0.5) returns 0

The values have to be exactly equal; for instance, a real number is not the same as an integer number,
as the following example illustrates:
 $(eq,2.0,2) returns 0

Normally, you wouldn’t test two numbers; instead, you would test a number and a value stored in
a variable. For example, to check if LUnits is set to 4 (architectural units):
 $(eq,$(getvar,lunits),4) returns 1 when LUnits = 4

 returns 0 if LUnits = any other number

IF

The if function checks if two expressions are the same. If so, the function carries out the first option,
and ignores the second option; if false, it carries out the second option. In generic terms:
 $(if,test,true,false)

where:

	 test —	specifies	another	logic	function,	such	as	$(eq,clayer,0);	test expects	a	value	of	1	(true)		

or	0	(false).

	 true —	indicates	the	action	to	take	when	the	test	is	true.

	 false —	indicates	the	action	to	take	when	the	test	is	false.

For example, the following test checks to see if the current layer is not 0. If so, it then gets the name
of the layer. Notice that the true parameter is missing.
 $(if,$(eq,clayer,”0”),,$(getvar,clayer))

OR

The or (Logical OR) function returns the bitwise logical “OR” of two or more integers.

XOR

The xor (Logical Bitwise Xor) function returns the bitwise logical “XOR” (eXclusive OR) of two or
more integers.

152 Customizing BricsCAD V19

CONVERSION FUNCTION

The conversion functions change the state of numbers.

FIX

The fix function removes the decimal portion from real numbers, converting them to integers. This
function can be used to extract the number before the decimal point from a real number. (There
is no “round” function.)
 $(fix,3.99) returns 3

STRING FUNCTIONS

The string functions manipulate text (and sometimes numbers).

INDEX

The index function extracts one element from a comma-separated series. Autodesk suggests using
this function to extract the x, y, and z coordinates from variables returned by the ($getvar function.
In generic terms, the function looks like this:
 $(index,item,string)

where:

	 item —	a	counter;	starts	with	0.

	 string —	the	text	being	searched;	contains	comma-separated	items.

Note that the item counter starts with 0, instead of 1; the first item is #0:
 $(index,0,”2,4,6”) returns 2

String must be text surrounded by quotation marks; leave out the quotation marks, and Diesel
ignores the function. The string consist of one or more items separated by commas.

Here is an example of extracting the y coordinate from the LastPoint system variable:
 $(index,1,$(getvar,lastpoint)) returns 64.8721

(The result will differ, depending on the coordinate stored in LastPoint.) Use the following item
values to extract specific coordinates:

Item Coordinate Extracted

0 X
1 Y
2 Z

 8 Writing Macros and Diesel Codes 153

NTH

The nth function extracts the nth element from one or more items. This function handles up to
eight items. Like index, the first item in the list is #0. In generic terms, the function looks like this:
 $(nth,item,n1,n2,...)

where:

	 item —	a	counter;	range	is	0	to	7.

	 n —	a	list	of	items	separated	by	comma;	maximum	of	eight	items	in	the	list.

If item exceeds n, then Diesel ignores this function.

Here are examples of using the function with numbers and text:
 $(nth,2,2.3,4.5,6.7) returns 6.7

 $(nth,1,Tailoring,BricsCAD,CAD) returns BricsCAD

STRLEN

The strlen (String Length) function returns the number of characters in the string. This function
is useful for finding the length of a string before applying another function, such as substr.
 $(strlen,Tailoring BricsCAD) returns 18

If the string is surrounded by quotation marks, Diesel ignores them.
 $(strlen,"Tailoring BricsCAD") also returns 18

This function also works with numbers and system variables:
 $(strlen,3.14159) returns 7

 $(strlen,$(getvar,platform)) returns 38

SUBSTR

The substr (SubString) function returns a portion of a string. This is useful for extracting text from
a longer portion. Generically, the function looks like this:
 $(substr,string,start,length)

where

	 string —	specifies	the	text	to	be	handled.

	 start —	indicates	the	starting	position	of	the	substring;	first	character	is	#1.

	 length —	specifies	the	length	of	the	substring;	optional.	If	left	out,	the	entire	rest	of	the	string	is	returned.

Here are some examples of this function at work:
 $(substr,Tailoring BricsCAD,5) returns oring BricsCAD

 $(substr,Tailoring BricsCAD,5,7) returns oring B

If the string is surrounded by quotation marks, Diesel ignores them.
 $(substr,"Tailoring BricsCAD",5) also returns oring BricsCAD

This function also works with numbers and system variables:
 $(substr,3.14159,1,4) returns 3.14

 $(substr,$(getvar,platform),5,15) returns osoft Windows N

154 Customizing BricsCAD V19

UPPER

The upper (uppercase) function converts text strings to uppercase characters. (There is no “lower”
function in Diesel.) It works with text and system variables, as follows:
 $(upper,”Tailoring BricsCAD”) returns TAILORING BRICSCAD

 $(upper,$(getvar,platform)) returns MICROSOFT WINDOWS NT VERSION 5.0

The function also works with numbers, but leaves them unchanged.

SYSTEM FUNCTIONS

The system functions are a collection of miscellaneous functions.

EDTIME

The edtime (Evaluate Date Time) function formats the display of the system time. This function
reads the date and time from the Date system variable, and then formats it according to your in-
structions. Generically, the function looks like this:
 $(edtime,$(getvar,date),format)

where

	 format —	specifies	how	the	date	and	time	should	be	displayed,	as	illustrated	by	the	table	below.

When format contains text that Diesel cannot interpret, it is displayed literally. The table shows
date formatting codes for a date of September 5, 2006:

Date Formats Meaning Example

D Single-digit date 5
DD Dual-digit date 05
DDD Three-letter day Fri
DDDD Full-letter day Friday
M Single-digit month 9
MO Dual-digit month 09
MON Three-letter month Sep
MONTH Full-letter month September
YY Dual-digit year 16
YYYY Four-digit year 2016

The table below lists time formatting codes for a time of 1:51:23.702AM:

Time Formats Meaning Example

H Single-digit hour 1
HH Dual-digit hour 01
MM Minutes 51
SS Seconds 23
MSEC Milliseconds 702
AM/PM Uppercase AM or PM AM
am/pm Lowercase AM or PM am
A/P Abbreviated uppercase A
a/p Abbreviated lowercase a

 8 Writing Macros and Diesel Codes 155

TIPS	 To	use	commas	in	the	format	code,	surround	them	with	","”	so	that	Diesel	does	not	read	the	
comma	as	an	argument	separator.	
	
The	quotation-mark	trick	does	not	work	for	words	like	“Date”	and	“Month”:	Diesel	returns	1date	and	
7onth.	
	
The	date	and	time	codes	are	case-insensitive;	D	and	d	work	the	same.	The	exceptions	are	for	the	AM/PM	
and am/pm	codes.	
	
When	the	AM/PM	and	A/P	format	codes	are	used,	Diesel	displays	the	12-hour	clock;	when	they	are	left	out,	
Diesel	displays	the	24-hour	clock.	
	
The	AM/PM	and	A/P	format	codes	must	be	entered	with	the	slash.	If,	say,	PM	is	entered,	then	Diesel	re-
turns	P	literally	and	reads	M as	the	single-digit	month	code.

Here are some examples of using the EdTime function:
 $(edtime,$(getvar,date),H:MMam/pm) returns 11:58am

 $(edtime,$(getvar,date),DDD”,” DD-MO-YY) returns Fri, 01-07-05

 $(edtime,$(getvar,date), DDD”,” d mon”,” YYYY) returns Fri, 1 Jul, 2015

EVAL

The eval (Evaluate) function displays text on the status bar:
 Command: modemacro

 Enter new value for MODEMACRO, or . for none <””>: $(eval,”This is text”)

It is equivalent to using the ModeMacro command without Diesel:
 Command: modemacro

 Enter new value for MODEMACRO, or . for none <””>: This is text

GETENV

The getenv (Get Environment) function gets the values stored in environment variables. This
function was designed for use with AutoCAD LT, which has two commands not found in AutoCAD:
SetEnv sets values in environment variables, and GetEnv reads the values. These environment
variables were originally stored in a file named aclt.ini, but are now stored in the Windows Registry.
 $(getenv,maxarray) returns 10000

As of BricsCAD V12, the behavior of $(getenv) is now consistent with that of LISP and SDS/BRX: it
searches for environment variables in BricsCAD environment registry; in Windows, Linux, or Mac
process environment; and in BricsCAD CFG settings. The read sequence is:

	 1.	 BricsCAD	Windows	registry

	 2.	 Linux,	Mac,	or	Windows	process	environment

	 3.	 BricsCAD	configuration

The Write sequence is (a) BricsCAD configuration, if a key is present, and (b) BricsCAD Windows
registry.

GETVAR

The getvar (Get Variable) function gets the values of system variables.

 $(getvar,lunits) returns 4

156 Customizing BricsCAD V19

LINELEN

linelen (line length) function returns the maximum length of display.
 $(linelen) returns 240

DIESEL PROGRAMMING TIPS

Here are some tips for working with Diesel:

•	 Each	argument	must	be	separated	by	a	comma;	there	must	be	no	spaces	within	the	expression.

•	 The	maximum	length	of	a	Diesel	macro	is	240	characters;	the	maximum	display	on	the	status	bar	is	32	characters.

•	 The	ModeMacro system	variable	outputs	text	directly	to	the	status	bar	until	it	reaches	a	$(,	and	then	it	begins	

evaluating	the	macro.

•	 Use	the	MacroTrace system	variable	to	debug	macros.

•	 Use	LISP’s	(strcat) function	to	string	together	Diesel	macros	within	LISP.

•	 Use	the $M=	construct	to	use	Diesel	expressions	in	menu	and	toolbar	macros.

Debugging Diesel
The purpose of the MacroTrace system variable is to help track down bugs in Diesel macros. When
on, a step-by-step evaluation of the Diesel macro should be displayed in the Text window. Although
MacroTrace exists in BricsCAD, it is not yet implemented.

Instead, BricsCAD displays errors directly, whether in a menu or on the command line. Below, I
entered Diesel code with a non-exist ant sysvar, “nonsense.”

Error reported by Diesel

ModeMacro: Displaying Text on the Status Bar
The purpose of the ModeMacro command is to display text on the status bar.

Should BricsCAD ever get this function, then here is how to use it. First, let’s see how to display
text to the status bar:

1. Enter	the	ModeMacro system	variable	at	the	‘Command:’	prompt,	and	then	type	something:
 Command: modemacro
 New value for MODEMACRO, or . for none <””>: Customizing BricsCAD

 8 Writing Macros and Diesel Codes 157

	 The	words	“Customizing	BricsCAD”	should	appear	at	the	far	left	of	the	status	bar:

Using Diesel to display text on the status bar

	 (You	cannot	change	the	location	where	the	text	is	positioned	on	the	status	bar.)

2.	 To	remove	the	text	from	the	status	bar,	type	the	ModeMacro system	variable	with	a	.	(null	string),	as	follows:
 Command: modemacro
 New value for MODEMACRO, or . for none <”Customizing AutoCAD”>: .

Removing user-defined text from the status bar

158 Customizing BricsCAD V19

Notes

Customizing Ribbon
Tabs and Panels

CHAPTER SUMMARY

This chapter covers the following topics:

• Understanding the structure of ribbons

• Defining the look of the ribbon through workspaces

• Creating new tabs

• Adding panels to tabs

• Designing new panels

The ribbon is a Microsoft-designed user interface that some love to hate, and others have
come to like. Me, I don’t care for its design inconsistencies and for the extra clicks needed to get
at commands. Even though the ribbon is “unique” to Windows, Bricsys wrote a custom version so
that the ribbon works identically with the Linux and MacOS versions of BricsCAD.

In this chapter you learn how to customize the tabs and panels of the ribbon.

CHAPTER 9

160 Customizing BricsCAD V19

QUICK SUMMARY OF RIBBON COMMANDS AND VARIABLES

COMMANDS

 Ribbon displays the ribbon.

 RibbonClose closes the ribbon.

SYSTEM VARIABLES

 RibbonState (read-only) reports whether the ribbon palette is open or closed:

	 •	 0	=	ribbon	is	closed	
	 •	 1	=	open	(default	in	most	workspaces)

 RibbonDockedHeight determines the height of the ribbon when docked:

	 •	 0	=	ribbon	sizes	itself	to	the	height	of	the	selected	tab
	 •	 120	=	default	value	
	 •	 1	to	500	pixels	=	range

SETTINGS DIALOG BOX

 The Ribbon section of the Settings dialog box holds these two ribbon variables:

(new in V19) BricsCAD V19 changes the content of some of the ribbons, depending on the work-
space. In particular, the ribbon for the BIM workspace is dramatically different

Ribbon for BIM workspace

The BIM ribbon goes retro, looking like a toolbar. The look is borrowed from the Bricsys Shape
program, which is meant to be a pre-design program.

Shape it is downloaded free from https://www.bricsys.com/en-intl/shape/.

 9 Customizing Ribbon Tabs and Panels 161

The Structure of Ribbons

Along the top of the ribbon is a series of tabs with names like Home, View, and Settings. Tabs are
collections of panels, and panels collect similar commands. You can think of tabs as overlapping
toolbars. (The File “tab” is not a tab, but the File menu; that’s why it’s colored blue.)

Tab names

Panel names

The ribbon consists of tabs and panels

Panels are identified by names along the bottom of the ribbon, like File, Bricsys 24/7, and Clipboard.
When the ribbon is too wide for the screen, panels are compacted with a slideout, as shown below.

Condensed Annotations panel showing all items in a slide-out panel

The purpose of subdividing a ribbon into tabs and panels is to present a logical collection of related
commands. For example, many 2D drawing and editing commands are found in the Draw tab. All
parametric commands are clustered in the Parametric tab.

The formal structure of a ribbon looks like the following:
Ribbon

 Tab (one or more tabs)

 Panel (one or more panels)

 Rows (rows are optional; multiple rows allow vertically-stacked buttons)
 Buttons and combo bars (drop lists)
 Ribbon breaks (separator lines)
 Split buttons (drop-downs, fly outs)
 Toggle buttons (change color to show on-off status)

Here it gets tricky: although tabs and panels are customized by the Customize dialog box, the con-
tent of ribbon you see on the screen can also be defined by the current workspace! So, when you
customize the ribbon, you may have to work in two places:

Ribbon tab	—	creates	all	the	ribbon	tabs	and	panels	available	in	BricsCAD	

Workspace tab —	optionally	toggles	the	visibility	tabs	and	panels	to	determine	which	ones	are	seen	by	users	

Technically, this is called “indirection.” It makes customizing ribbons more complex with the benefit
of greater flexibility. It makes things easier for the you, the customizer: create one master set of
tabs and panels, and then click them on and off for various workspaces.

162 Customizing BricsCAD V19

TUTORIAL: HOW TO ADD PANELS TO RIBBON TABS

There are two ways to customize the ribbon: change the panels displayed by tabs, and change the
content of panels. First, let’s see how to add a panel to a ribbon tab.

1.	 Start	BricsCAD.	

2.	 If	there	is	no	ribbon	visible,	then	turn	it	on.	To	display	the	ribbon,	enter	the	Ribbon	command:
 : ribbon

	 Notice	that	the	ribbon	appears.	If	toolbars	are	on,	then	the	ribbon	appears	below	them.

Ribbon added to the “2D Drafting” workspace

TIPS	 The	ribbon	is	turned	off	with	the	RibbonClose	command,	or	by	clicking	the	small	x	at	the	rib-
bon’s	upper	left	corner.	
	
When	no	drawings	are	open,	all	commands	on	the	ribbon	no	longer	work;	they	are	colored	gray.	Use	the	
File	“tab”	to	open	a	drawing	or	start	a	new	one.

3.	 Open	the	Customize	dialog	box.	I	find	typing	the	cui	alias	the	fastest	way	to	do	this.

4.	 Choose	the	Ribbon	tab.	(It	can	get	confusing:	tabs	in	the	dialog	box,	and	tabs	on	the	ribbon.	To	distinguish	

between	them,	I’ll	use	“ribbon	tab”	to	refer	to	tabs	in	the	ribbon.)	Notice	there	are	two	nodes	for	customiz-

ing	ribbons,	Ribbon Tabs	and	Ribbon Panels.	

 Ð Ribbon Tabs node — specifies which panels occupy a tab

 Ð Ribbon Panels node — customizes the content of panels

Customize dialog box open to the Ribbon tab

 9 Customizing Ribbon Tabs and Panels 163

5.	 Open	the Ribbon Tabs	node	by	clicking	the	 		Expand	button.	Notice	the	long	list	of	tab	names,	starting	with	

“Home.”	There	are	over	20	of	’em,	and	you	can	make	more.

Ribbon Tabs node showing default tabs provided with BricsCAD

TIP	 Some	tab	names	seem	to	have	near-duplicate	names,	such	as	“Home	2D”	and	“Home	3D.”	The	
difference	is	that	the	Home	2D	tab	contains	commands	suitable	for	2D	drafting,	while	Home	3D	is	meant	
for	3D	modeling.

6.	 Each	tab	on	the	ribbon	holds	one	or	more	panels.	Click	the	 	Expand	button	next	to	Home.	Notice	the	list	of	

panel	names,	such	as	File,	Bricsys 24/7,	and	Clipboard.	

7.	 To	add	a	panel	to	a	tab,	follow	these	steps:

a.	 Right-click	the	name	of	a	ribbon	tab,	such	as	Home.

b.		 From	the	shortcut	menu,	choose	Append Panel.	

Right-clicking a tab to insert a panel

TIP	 You	might	think	that	you	could	drag	an	item	from	the Available Tools	pane,	but	it	doesn’t	work	
with	the	tabs	section.	The	Available	Tools	are	meant	for	customizing	panels.

164 Customizing BricsCAD V19

	 Notice	the	Select	Ribbon	Panel	dialog	box.

List of available panels to insert into tabs

c.		 Select	the	name	of	a	panel,	such	as	“Draw	-	Arrange	2D,”	and	then	click	OK	to	close	the	dialog	box.

Arrange panel added to the end of the “Home ” tab

d.	 To	see	the	newly	added	panel,	click	OK	to	close	the	Customize	dialog	box	Notice	that	the	panel	appears	

at	the	far	end	of	the	ribbon’s	Home	tab.

 Arrange panel added to the end of the Home tab

Moving Panels
To change the order in which panels appear in a tab, simply drag them around. In the figure below,
I dragged the “Arrange” panel up to File. BricsCAD places it above (ahead) of the “File” panel.

Rearranging the order by panels by dragging them around

The result of the move is shown in the ribbon illustrated below:

Arrange panel moved to the left

 9 Customizing Ribbon Tabs and Panels 165

Copying Panels
Should you want to have a duplicate of a panel, hold down the Ctrl key (Cmd on Mac) while drag-
ging. This creates a copy at the new location.

Removing Panels
To remove a panel, right-click its name, and then choose Remove from the shortcut menu.

Removing a panel from a ribbon tab

BricsCAD asks if you are sure; click Yes.

Confirming the removal

TIP	 To	reset	the	UI	to	the	fresh-out-of-the-box	look,	open	the	Customize	dialog	box	and	then	click	
the	Reset to Defaults button.

TUTORIAL: MAKING NEW TABS

You have seen how to modify a tab by adding, moving, and removing panels. In this tutorial you
learn how to create a new tab from scratch.

1.	 Open	the	Customize	dialog	box,	and	then	go	to	the	Ribbon	tab.	

2.	 Open	the	Ribbon Tabs	section,	and	then	right-click	any	tab	name.	Notice	the	shortcut	menu:

Appending a new tab

3.	 Choose	Insert Ribbon Tab.	

166 Customizing BricsCAD V19

	 Notice	that	BricsCAD	opens	the	Add	Ribbon	Tab	dialog	box.

Naming the new tab

4.	 Fill	out	the	fields	with	something	unique,	such	as	with	this	data:

Dialog box filled out

Field Input Meaning

Label Custom Label displayed by the tab on the ribbon
Title My Custom Tab Title shown in the Customize dialog box
ID rtCustom Identification used by BricsCAD to distinguish between elements;
 “rt” is short for ribbon tab and identifies the purpose of the ID

5.	 Click	OK	to	close	the	dialog	box.	Notice	that	the	new	tab	is	added	to	the	start	of	the	list	of	tab	names.	You	

can	drag	it	to	another	location,	if	you	wish.

New tab added to the ribbon

6.	 At	this	point,	the	tab	is	empty!	After	you	exit	the	Customize	dialog	box,	notice	that	BricsCAD	does	not	display	

it	immediately	—	unlike	the	new	panel.	

Displaying a new tab requires you to go to into the Workspaces tab and add the new tab to the
current workspace. The next tutorial describes how to make the new tab appear.

Tutorial: How to Force New Tabs to Display
Recall from earlier in this chapter that workspaces are involved in what elements are shown by the
ribbon. When you customize the ribbon, you may have to work in two places:

 Ð Ribbon tab — creates all the ribbon tabs and panels available in BricsCAD

 Ð Workspace tab — optionally toggles the visibility tabs and panels to determine which ones are seen by users

Let’s move to the Workspace tab, and add your new ribbon tab to the “2D Drafting” workspace.

 9 Customizing Ribbon Tabs and Panels 167

1.	 In	the	Customize	dialog	box,	switch	to	the	Workspace	tab.

2.		 Open	the	Drafting	node,	and	then	open	the	Ribbon	node.	Notice	that	your	new	tab	does	not	appear	in	the	

list	of	tab	names.

List of ribbon tabs displayed by the “2D Drafting” workspace

3.	 To	add	your	new	tab	to	the	workspace,	right-click	Ribbon	and	then	from	the	shortcut	menu	choose	Append

Ribbon Tab.		

4.	 Notice	the	Select	Ribbon	Tab	dialog	box.	From	the	dialog	box,	choose	“My	Custom	Tab,”	and	then	click	OK.	

Choosing a tab from the dialog box

4.		 Notice	that	your	custom	tab	is	added	to	the	workspace.	

Custom tab added to workspace

TIP	 When	you	see	Append,	BricsCAD	adds	the	item	to	the	end	of	the	list.	When	you	see	Insert,	the	
item	is	placed	ahead	of	the	selected	item.

168 Customizing BricsCAD V19

QUICK SUMMARY OF PANEL PARAMETERS

When you select the name of a panel in the Ribbon Tabs section of the Customize dialog box, BricsCAD displays the
following parameters:

This is the meaning of the parameters:

ID — identification used by BricsCAD for this user interface element. It must be unique, and should not be changed for
elements that ship with the software. In this case, “rp” is short for ribbon panel.

Collapse — controls how to make panels smaller when the tab is wider than the BricsCAD window. Choose one of
the options:

 Ð Automatic lets BricsCAD decide when to collapse the panel; default setting for all panels

 Ð Never Collapse keeps the panel full size, but cuts off buttons when BricsCAD window becomes too
narrow

 Ð Collapse Last causes other panels to collapse first

Label — name that appears as the panel name on the ribbon. In this case, “File” appears:

Title — title of the panel

Key Tip — shortcut that accesses the panel from the keyboard (not yet implemented in BricsCAD)

5.	 To	see	the	tab,	close	the	Customize	dialog	box	by	clicking	OK.	Notice	that	the	new	tab	appears	at	the	end	of	

the	ribbon,	and	that	it	is	blank.	It	needs	to	be	filled	with	one	or	more	panels.

The new tab appears in the ribbon, empty

 9 Customizing Ribbon Tabs and Panels 169

Adding Panels to Ribbon Tabs
To add panels to the new tab, review the earlier tutorial. All available panels are at right.

Moving Tabs Along the Ribbon
To move a ribbon tab to a different location on the ribbon, just drag its name to the new spot in the
Workspaces tab. The workspace determines the order of tabs in the ribbon; the Ribbon tab does not.

Copying Tabs
When you hold down the Ctrl key (Cmd on Mac) while dragging the name of a ribbon
tab, BricsCAD makes a copy of the tab.

Hiding Tabs in a Workspace
To hide a ribbon tab, right-click its name in the Workspace tab, and then choose Remove.

Hiding a tab by removing it from the workspace

Ignore the warning message: the Remove action does not erase the tab, but merely
removes it from view in this specific workspace. To actually erase a ribbon tab from
BricsCAD, you need to remove it in the Ribbon tab of this dialog box.

False warning message

Customizing Ribbon Panels

Now that you know how to customize and create ribbon tabs, let’s move on to a more
complex task: customizing the content of panels. It is at the panel level where the real
work of customizing ribbons takes place!

BricsCAD boasts the many panels shown at right, and you can make your own. You
can change the content of existing panels, add new panels, or erase them. Panels hold
many kinds of elements, such as sub-panels, rows, buttons, and other controls.

170 Customizing BricsCAD V19

Below I show the Layers ribbon panel along side elements that make up the panel in the Custom-
ize dialog box.

Left: Layers panel; right: elements of the panel listed in the Customize dialog box

TIP	 To	easily	see	a	panel’s	definition	from	its	tab,	right-click	the	panel	name	and	then	choose	Show
Panel.	BricsCAD	jumps	to	the	panel’s	definition.

Notice that each panel definition begins with a Row element. It is followed by any other element,
such as one or more buttons or more rows.

PANEL DESIGN TIPS

Here are some design tips:

 Flyouts are defined by a Large button assigned Split behavior

 Three rows are define by a sub-panel so that their elements
 are positioned adjacent to the large Layers flyout button

 9 Customizing Ribbon Tabs and Panels 171

TUTORIAL: POPULATING A NEW PANEL

You learned how to create a new panel in an earlier tutorial. Now it is time to fill it up (populate it)
with buttons and other elements. Open the Customize dialog box, and click the Ribbons tab. You
are working with the “Ribbon Panels” node, as follows:

1.	 Right	click	Ribbon Panels,	and	choose	Append Ribbon Panel.

Appending a panel

	 Recall	that	“Append”	means	the	panel	will	be	added	to	the	end	of	the	list.

2.	 Notice	the	dialog	box,	and	that	it	looks	like	the	one	for	making	new	ribbon	tabs:	this	one	is	specific	to	panels.

Naming and ID’ing the new panel

	 Fill	in	the	fields	as	shown	below,	and	then	click	OK.

Field Value Meaning

Label MyPanel Identifies the panel inside the Customize dialog box
Title My Panel Labels the panel for the user on the ribbon
ID rpMyPanel Identifies the panel to BricsCAD; “rp” is short for ribbon panel

	 Notice	that	the	new	panel	is	added	to	the	end	of	the	list	of	panels.	If	you	were	to	exit	Customize	now,	you	

would	see	that	it	is	blank,	as	illustrated	below.	

New panels are empty

3.	 The	very	first	thing	you	do	with	a	new	panel	is	to	add	a	row.	Rows	hold	buttons	and	other	UI	elements	in	a	

horizontal	row.	(To	create	a	vertical	column	of	elements,	you	would	append	two	or	more	rows;	BricsCAD	

stacks	them	automatically.)

	 	To	add	a	row,	follow	these	steps:

a.	 Right-click	the	name	of	the	new	panel.

b.	 Choose	Append Row	from	the	shortcut	menu.

Adding a row to the new panel

172 Customizing BricsCAD V19

4.	 Now	fill	the	row	with	one	or	more	buttons.	First	add	a	regular	button,	which	BricsCAD	calls	a	“command	but-

ton.”	(Later	you	tackle	the	other	buttons.)	This	is	how	it	works:

a.	 Right-click	Row,	and	then	choose	Append Command Button	from	the	shortcut	menu.

Adding a button to the row

b.		 Notice	the	Add	Ribbon	Command	Button	dialog	box.	Ensure	that	Select Available Tool	is	selected.

Selecting a tool from the available ones

c.	 Choose	a	command,	such	as	Coincident,	and	then	click	OK.	Notice	that	it	is	added	to	the	My	Panel	panel.

Tool (command button) added to the new row

	 (If	you	were	to	check	the	ribbon	back	in	BricsCAD,	the	panel	would	look	like	this	the	figure	below.)

Left: Panel with single command button; right: Editing the parameters that define the command button

In the parameters pane at the bottom of the Customize dialog box, there are fields that define the
button. Several of them should be already familiar to you from the chapters on customizing tool
bars and menus, such as Help, Command, and Image. See figure above, at right.

 9 Customizing Ribbon Tabs and Panels 173

Of specific interest to ribbon design is the Button Style field. It provides the following options:

Styling the button

Here is what the options mean:

Button Style Icon Size Text Label Illustration

Small With Text 16x16 pixels Beside the icon

Small Without Text 16x16 pixels No label

Large with Text (Vertical) 32x32 pixels Below the icon

Large with Text (Horizontal) 32x32 pixels Beside the icon

Large Without Text 32x32 pixels No label

This is what the panel looks like with buttons made from each setting:

Same button displayed with different styles

With the basics of panel design accomplished, for the remainder of this chapter, I catalog all panel
functions.

174 Customizing BricsCAD V19

CATALOG OF PANEL ELEMENTS

Inserting and removing elements from panels is accomplished through shortcut menus, which are
accessed by right-clicking existing elements. The sole exception is moving elements around, which
is done through drag’n drop.

These are the three shortcut menus that contain the commands; the menu shown for “Row” is also
the one accessed from all other elements, such as Panel and button.

Shortcut menus for editing panels

In the following sections, I describe the functions of each option grouped as follows:

 Ð Append Ribbon Panel / Insert Ribbon Panel

 Ð Delete

 Ð Add Launcher

 Ð Append Row / Insert Ribbon Row / Insert Row Panel

 Ð Append Break / Insert Ribbon Break / Append Separator

 Ð Append Split Button

 Ð Append Toggle Button

 9 Customizing Ribbon Tabs and Panels 175

Append Ribbon Panel / Insert Ribbon Panel
The Append and Insert Ribbon Panel options both add a new, blank panel to the list of Ribbon
Panels. The difference between them is subtle:

 Ð Append Ribbon Panel adds the new panel to the top of the list

 Ð Insert Ribbon Panel adds the new panel to the end of the list

If it ends up in the wrong place, just drag the panel name to the proper location. Both options
prompt you to fill out the fields in the same dialog box:

Labeling a panel

The ID should start with “rp” to identify it as a ribbon panel, and the name must contain no spaces.

PANEL PROPERTIES

Should you need to, you can modify the names in the properties pane, except for the ID, which is
fixed permanently — unless you erase the panel. (The Key Tip property does not function yet.)

Properties of a panel

Delete
The Delete option erases the selected element. BricsCAD asks if you are sure:

Last chance before erasing it

176 Customizing BricsCAD V19

Add Launcher
A launcher is a small panel with a flyout button. When you click the flout button, the panel ex-
pands, as shown below. This is useful for tabs that are really wide (keeping their size in check) or
for panels that contain rarely used commands.

Left: Closed launcher; right: opened launcher

TYPE PROPERTY

Launchers have just one unique property. Type toggles it between “Macro” and “Ribbon.”

Type options

At time of writing, however, they have no effect on the launcher.

Append Row / Insert Ribbon Row / Insert Row Panel
Rows and row panels are meant to group elements within panels. The difference between the three
options are as follows:

 Ð Append Row — adds a row to the panel; a row holds one or more buttons horizontally

 Ð Insert Ribbon Row — also adds a row to the panel; there seems to be no difference from Append Row option

 Ð Insert Row Panel — adds a sub-panel to the panel; a panel holds one or more rows vertically

A common use of rows and row panels is to locate a group of smaller buttons adjacent to a large
one, as illustrated below.

Left: Matrix of zoom buttons in panel; right: how they are defined in the Customize dialog box

 9 Customizing Ribbon Tabs and Panels 177

To get the nine buttons adjacent to the one big Zoom Extents button, one Panel and three Row
elements were used:

 Ð (Row) Panel — segregates the three rows from the big button

 Ð Row (x3) — creates three rows of horizontal buttons, stacked vertically

Rows have no properties; row panels have the following properties, none of which work at this time.

Properties of rows

ROW PANEL PROPERTIES

The Resize Style property determines what happens to the row panel when the ribbon is too small
for the width of the BricsCAD window. However, none of these have an effect at the time of writing.

Row Panel Options Meaning

Resize Style • Automatic Lets BricsCAD handle the re-sizing on its own terms
 • Never hide text Eliminates icons before eliminating icons
 • Never wrap Prevents panel from wrapping, splitting into two or more rows
 • Never shrink Prevents panel from being made smaller
 • Do not resize Prevents panel from changing its size

Resize Priority 100 (default) Determines whether other panels should resize before this one
 Range is 1 (resizes first) to 1000 (resizes last)

Justify Top • Yes Justifies row panels to the top of the row
 • No Centers the row panels

TIP	 BricsCAD	normally	stacks	ribbon	elements	vertically,	and	the	Row	Panel	element	aligns	them	
horizontally.	(There	is	no	“column”	element.)	You	can	use	row	panels	to	create	rows	within	rows,	or	as	
columns	(a	stack	of	buttons)	next	to	rows.

Append Break / Insert Ribbon Break / Append Separator
Breaks split a panel into two, so that the second half slides out when clicked. BricsCAD, however,
does not support breaks. If you were to append a break, the contents of the panel would disappear,
so avoid using this element until Bricsys implements it!

The figures below show before and after appending a break to the Home-File 2D panel.

Left: Before....; right: ...and after applying the faulty Break parameter

Separators draw lines between elements in panels. BricsCAD, however, does not support breaks
at tine of writing.

178 Customizing BricsCAD V19

Append Split Button
To create a flyout-like effect on the ribbon, you take two steps: (a) append a split button, and then
(b) specify how it works with the Behavior property. To add a flyout to the panel, follow these steps:

1.	 In	the	panel	you	are	designing,	right-click	a	row	and	then	choose	Append Split Button	from	the	shortcut	

menu.	For	this	tutorial,	the	panel	is	named	“My	Panel,”	as	illustrated	below.

Adding a slit button to a panel

2.	 Notice	that	Split	Button	is	added	to	the	row:

New split button

	 Assign	a	command	by	right-clicking	Split Button	and	then	choosing	Append Command Button	from	the	

shortcut	menu.	From	the	Add	Ribbon	Command	Button	dialog	box,	select	any	command	and	then	click	OK.	

	 The	result	is	a	small	button	with	the	flyout	icon	to	the	right	—	 	—	the	small	black	arrow.	If	you	were	to	

click	it,	you	would	see	the	button	repeated	on	the	flout.

Single split button

3.	 Add	one	or	two	more	buttons	to	the	split	so	that	it	looks	something	like	this:

More buttons added to the split

 9 Customizing Ribbon Tabs and Panels 179

	 On	the	ribbon,	the	effect	is	as	follows:

Multiple split buttons

4.	 With	the	split	button	in	place,	it’s	now	time	to	adjust	its	look.	Split	buttons	have	several	unique	parameters	of	

interest	to	you:	

Parameters for split buttons

 Ð Behavior

 Ð List Style

 Ð Grouping

Let’s take a look at how they affect split buttons.

BEHAVIOR PROPERTY

The Behavior property of split buttons determines how the topmost button behaves when users
click on it. Here are the options:

Parameters for Behavior property

The options determine whether the button displays the default command (the first one in the list
of buttons), or the most recently used one (abbreviated as “MRU” by the programming biz). As well,
Behavior determines whether the element looks like a drop down (like a flyout) or like a split but-
ton (shows two buttons at once).

TIPS	 Split	buttons	let	you	click	the	upper	half	to	execute	the	most-recently	used	command,	or	lower	
half	to	display	the	drop-list	(flyout).	
	
It	is	usual	to	use	make	split	buttons	large	ones,	so	that	they	are	easier	for	users	to	manipulate./

180 Customizing BricsCAD V19

At time of writing, the Behavior parameter was not implemented; the only behavior that works is
“Drop Down with Recent,” no matter which one you choose. If Behavior were to work, then these
are the behavior options:

Behavior Displays

Drop Down Default command (first one in the list)
Drop Down with Recent MRU (most recently used) command

Split Default command
Split with Recent MRU command (default option)
Split with Recent (static text) Above line: Icon of MRU command
 Below line: default command

LIST STYLE PROPERTY

The List Style property determines the look of buttons in drop-downs.

Left: parameters for List Style property; right: how they appear in the ribbon

At time of writing, the List Style parameter was not implemented; the only style that works is “Icons
with Text” no matter which one you choose. If it were to work, then these would be the behavior
options:

List Style Displays

Icon Only icons
Icon with Text Icons with text (default)
Descriptive Icons with boldface text

TIP		 If	you	really	need	to	cram	in	buttons,	which	I	do	not	recommend,	then	use	the	Icon	option,	as	
this option takes up the least space .

GROUPING PROPERTY

The Grouping property gathers buttons in split lists into groups. Grouping works with the Group
Name property, which defines the groups by name, but it was not implemented in BricsCAD at
time of writing.

The Grouping two options are No (default) and Yes:

Grouping Displays

Yes Buttons in drop-downs are grouped by their assigned group name
No Buttons are listed in the order in which they appear in the Customize dialog box

 9 Customizing Ribbon Tabs and Panels 181

Append Toggle Button
Toggle buttons display a blue background when on, and a normal background when off. They are
meant to provide a visual indication of the on-off status of a setting, as shown below with the Entity
Snaps panel.

Toggle buttons appearing blue when turned on

The catch is that the Toggle button itself doesn’t know how to handle the on-off status. It turns out
that a toggle-style button adds a parameter for entering Diesel code, as highlighted below.

Diesel code needed to toggle buttons

DIESEL PROPERTY

BricsCAD monitors the Diesel code to see whether to turn the blue background on. This is exactly
the same situation as with menu macros, in which you use Diesel to turn check marks on and off.
Here is the code for one of the entity snap toggles on the ribbon:
$(if,$(=,$(and,$(getvar,OSMODE),0x0001),0),,!.)

The good news is that you can copy and paste this code; all you need to do is replaced “OsMode”
with the name of another variable.

182 Customizing BricsCAD V19

Notes

Customizing Keystroke
Shortcuts, Aliases, and

Shell Commands

CHAPTER SUMMARY

This chapter covers the following topics:

• Understanding, editing, and deleting keyboard shortcuts

• Learning how keystrokes differ in Mac from Windows/Linux

• Listing all keystroke shortcuts

• Assigning multiple commands

• Learning about command aliases

• Editing and deleting aliases

• Applying alias rules

• Writing shell commands

Power users know that the keyboard is the fastest way to enter commands. BricsCAD pro-
vides several ways to use the keyboard efficiently, among them keyboard shortcuts and aliases.
These let you carry out commands by simply pressing assigned keys on the keyboard — often just
one or two. Both facilities are handled by the Customize dialog box.

CHAPTER 10

184 Customizing BricsCAD V19

QUICK SUMMARY OF SHORTCUT KEYSTROKES

BricsCAD uses these shortcut keystrokes, most of which can be customized through the Customize dialog box. On Mac
computers, use Cmd instead of Ctrl.

FUNCTION KEYS

Shortcut Commands Meaning

F1 Help Displays the Help dialog box
F2 TextScr, Toggles between Text and Graphics windows
 GraphScr
Shift+F2 CliState Toggles the command bar
Ctrl+F2 Ribbonstate Toggles the ribbon
F3 Osnap T Toggles object snap mode
Shift+F3 StatBar Toggles the status bar
F4 Tablet T Toggles tablet mode
Shift+F4 ScrollBar Toggles the scroll bars
Ctrl+F4 WClose Closes the current drawing; function provided by Windows
Alt+F4 Quit Closes drawings and BricsCAD; function provided by Windows
F5 Isoplane Cycles through isoplanes
F6 Coordinate T Cycles through coordinate display modes
Ctrl+F6 . . . Switches to the next drawing; function provided by Windows
F7 Grid T Toggles the display of the grid
F8 Orthogonal T Toggles orthogonal mode
Shift+F8 VbaMan Displays VBA Manager dialog box
Alt+F8 VbaRun Displays Run BricsCAD VBA Macro dialog box
F9 Snap T Toggles snap mode
F10 SnapType Toggles polar tracking
F11 PolarMode Toggles object snap tracking
Shift+F11 AddInMan Displays the Add-in Manager dialog box
Alt+F11 VBA Opens the Visual Basic Editor
F12 QuadDisplay Toggles the Quad cursor; cannot be redefined with Customize
Ctrl_F12 ... Toggles sub-entity selection mode; cannot be redefined with Customize

CONTROL KEYS

On MacOS computers, press Cmd instead of Ctrl.

Shortcut Command Meaning

Ctrl+0 CleanScreenOn Toggles clean screen mode
 CleanScreenOff
Ctrl+1 Properties Toggles Properties panel
 PropertiesOff
Ctrl+2 Explorer Displays Drawing Explorer
Ctrl+9 CommandLine Toggles command bar
 CommandLineHide

Ctrl+A SelGrips All Selects all non-frozen objects
Ctrl+B Snap T Toggles snap mode
Ctrl+C CopyClip Copies selected objects to Clipboard

 . . .continues

 10 Customizing Keystroke Shortcuts, Aliases, and Shell Commands 185

These are the differences between keyboard shortcuts and aliases:

 Ð Keystroke shortcuts are like ctrl+C, alt-tab, and ctrl+V that to copy objects to the Clipboard, switch
to another application, and then paste them, respectively. You hold down the ctrl key, and then press C.
BricsCAD has many other keyboard shortcuts for its commands, and it lets you create your own. Once you’ve
memorized even a few, they let you work at top speed. The Keyboard tab assigns shortcuts to function keys,
ctrl, alt, shift, and/or arrow key combinations.

 Ð Aliases are abbreviations for command names, such as L for the Line command or AA for Area. So that you
don’t have to type full command names each time, you can create more aliases in the Customize dialog box’s
Aliases tab.

 . . .continues

Ctrl+Shift+C CopyBase Copies selected objects with base point
Ctrl+E Isoplane Switches to next isoplane
Ctrl+F -Osnap T Toggles entity snap mode
Ctrl+G Grid T Toggles display of the grid
Ctrl+H PickStyle Toggles pick style
Ctrl+I Coords Cycles through coordinate display modes
Ctrl+J ; Repeats the last command
Ctrl+K Hyperlink Displays Hyperlink dialog box
Ctrl+Shift+L LookFrom Toggles look-from viewpoint gadget
Ctrl+L Orthogonal T Toggles orthographic mode
Ctrl+M ; Repeats the last command
Ctrl+N New Displays the New Drawing dialog box
Ctrl+O Open Displays the Open Drawing dialog box
Ctrl+P Print Displays the Print dialog box
Ctrl+Shift+P OpmState Toggles the Properties panel
Ctrl+Q Quit Closes drawings and BricsCAD
Ctrl+R ^V Cycles through viewports
Ctrl+S QSave Saves the current drawing
Ctrl+Shift+S SaveAs Displays the Save Drawing As dialog box
Ctrl+T Tablet T Toggles tablet mode
Ctrl+V PasteClip Pastes entities from Clipboard
Ctrl+Shift+V PasteBlock Pastes entities from Clipboard as a block
Ctrl+Alt+V PasteSpec Displays the Paste Special dialog box
Ctrl+X CutClip Cuts selected entities to Clipboard .
Ctrl+Y Redo Redoes the last undo
Ctrl+Z U Undoes the last command

OTHER KEYS

Del	 	 Erase	 	 Erases	the	selected	entities

Enter	 	 	 Executes	command,	repeats	command,	executes	default	option

Esc	 	 	 	 Cancels	the	current	command

Home	 	 	 Resets	the	3D	view	to	home	view

186 Customizing BricsCAD V19

TIP	 Do	not change	keystrokes	reserved	by	Windows,	such	as	these	ones:	
	 	 alt+f4	 	 Exits	BricsCAD	
	 	 ctrl+f4	 	 Closes	the	current	window	 	 	
	 	 ctrl+f6	 	 Changes	focus	to	the	next	window	
	 	 f1	 	 Displays	help

Out-of-the-box, BricsCAD defines the shortcut keystrokes listed in the boxed text on the previous
pages. Regular keys (like A and 1) can be attached to the following special keys:

 Ð Function keys — those marked with the F prefix, such as F1 and F2

 Ð Shift keys — hold down the shift key, and then press a function, number, or alphabet key, such as F2 or B

 Ð Alternate (Option) keys — hold down the alt key, and then press another key; on Macs, hold down options key

 Ð Control (Command) keys — hold down the ctrl key, and press another key; on Macs, hold down cmd key

 Ð Shift + Control keys — hold down the shift and ctrl (or cmd) keys, and press another key

 Ð Shift + Alternate keys — hold down both the shift and alt (or opt) keys, and then press another key

 Ð Control + Alternate keys — hold down both the ctrl (or cmd) and alt (or opt) keys, and press another key

 Ð Control + Alternate + Shift keys — hold down the ctrl (or cmd) and alt (or opt) and shift keys all at the
same time, and then press another key

TIP	 It	does	not	matter	if	you	press	shift first	or	ctrl (cmd)	first	—	similarly	for	alt (opt).

You can add and change definitions by assigning commands to as many as 188 key combinations.

While Macs use Cmd/Options instead of the Ctrl/Alt used by Windows and Linux, the Customize
dialog box displays Ctrl and Alt for all three operating systems. For instance, “Paste as Block” is
shown as Ctrl+Alt+V in the Windows, Linux, and Mac versions of the Customize dialog box, but is
used in the Mac version by pressing Command+Options+V.

Left: Keyboard shortcuts in Windows; right: same shortcuts in Mac version of Customize dialog box

The Control key on Mac keyboards cannot be used with BricsCAD.

Here is a mapping table between the keys on the three operating systems:

Windows, Linux Mac Equivalent Mac Symbol

Alt (Alternative) Option
Ctrl (Control) Cmd (Command)
 . . . Control
F (Function) F (Function) . . .
Shift Shift

 10 Customizing Keystroke Shortcuts, Aliases, and Shell Commands 187

TUTORIAL: DEFINING SHORTCUT KEYS

In this tutorial, you assign the Fillet command to ctrl+shift+F. Here are the steps to defining
this shortcut keystroke:

1.	 Enter	the	Customize	command.		(Alternatively,	right-click	any	toolbar	or	ribbon,	and	then	choose	Customize	

from	the	shortcut	menu,	or	enter	the	CUI	alias.)	Notice	the	Customize	dialog	box.

2.	 Choose	the	Keyboard tab.	Notice	that	it	consists	of	three	panes:

Customize dialog box displaying the Keyboard tab

 Ð Shortcuts pane (at the left) — lists the keyboard shortcuts that are currently assigned

 Ð Available Tools pane (at the right) — lists all of BricsCAD’s commands, sorted by menu name

 Ð Keyboard Shortcut pane (at the bottom) — for editing shortcut settings

3.	 To	define	a	new	shortcut,	right-click	any	item	in	the	Shortcuts	area,	and	then	choose	Insert Shortcut.	

Right-clicking to access shortcut menu

188 Customizing BricsCAD V19

	 Notice	that	the	Add	Keyboard	Shortcut	dialog	box	appears,	and	that	it	offers	these	options:

 Ð Select available tool — for choosing an existing tool (aka command) from BricsCAD’s list

 Ð Create a new tool — for creating new tools (using macros) from scratch.

Dialog box for choosing the “tool” (command) to add to the shortcut keystroke

4.	 In	this	tutorial,	you	work	with	an	existing	tool,	and	in	this	case	the	“available	tool”	is	the	Fillet	command.	

There	is,	unfortunately,	no	quick	way	to	locate	the	command,	as	they	are	not	listed	alphabetically.

Arriving at the Fillet command

	 So,	here	is	how	to	locate	the	command:

a.	 Ensure	the	Select Available Tool	option	is	selected.	

b.	 The	Fillet	command	is	a	modification	command,	so	you’ll	find	it	under	Modify.	In	the	list	of	Available	

Tools,	open	Modify by	clicking	the	+	sign	next	to	it.

c.	 Scroll	down	until	you	come	across	Fillet.	

TIP	 As	a	faster	alternative,	press	the	‘f’	key	on	the	keyboard.	This	causes	the	highlight	to	jump	to	
Flatten.	Keeping	pressing	‘f’	until	the	cursor	jumps	to	Fillet.

d.	 Click	OK to	accept	Fillet.

 10 Customizing Keystroke Shortcuts, Aliases, and Shell Commands 189

5.	 Back	in	the	Customize	dialog	box,	notice	that	much	of	the	data	is	filled	in	for	you,	such	as	the	help	string	and	

command	macro.	The	macro	looks	like	this:	
 ^c^c_fillet

	 (Read	chapter	8	to	learn	more	about	macros.)

Fillet added, but not yet assigned a keystroke

	 	All	that	is	missing	is	the	desired	keystroke.	You	add	it	by	pressing	the	desired	keys	on	the	keyboard,	like	this:

a.	 Click	the	blank	field	next	to	Key.

b.	 Press	the	key	combination	on	the	keyboard,	whether	Windows,	Linux,	or	Mac:	
 CTRL+SHIFT+F

 Ð In Windows and Linux: Hold down the Ctrl and Shift keys, and then press F.

 Ð In MacOS: Hold down the Cmd and Shift keys, and then press F.

	 Then	let	go	of	the	three	keys.	Notice	that	the	shortcut	is	added	to	the	Shortcut	list.

Pressing the keystrokes to assign to the tool

6.	 Click	OK to	dismiss	the	Customize	dialog	box	and	save	your	work.

7.	 Test	the	keystroke	shortcut	by	holding	down	the	ctrl (cmd	on	Macs)	and	shift keys,	and	then	pressing	F.	

BricsCAD	should	execute	the	Fillet command.

TIP	 You	can	assign	one	or	more	keystroke	shortcuts	per	command.	But	once	a	keystroke	is	as-
signed,	it	cannot	be	used	for	other	commands.

190 Customizing BricsCAD V19

TUTORIAL: EDITING & DELETING KEYBOARD SHORTCUTS

To edit or delete a keyboard shortcut, follow these steps:

1.	 Open	the	Customize	dialog	box	with	the	Cui	alias.

2.	 In	the	Keyboard	tab,	select	a	keystroke	in	the	left	hand	column,	such	as	the	ctrl+shift+F	you	defined	earlier.

3.	 In	the	Keyboard	Shortcut	area,	edit	the	command.	You	can,	for	example,	backspace	over	the	command	text,	

and	then	enter	another	macro.

4.	 To	 remove	a	keyboard	 shortcut,	 right-click	 it,	 and	 then	choose	Delete Shortcut	 from	the	 shortcut	menu.

Deleting a shortcut definition

5.	 BricsCAD	asks	if	you	are	sure;	click	Yes.

Getting one last chance before the definition is gone

6.	 Click	OK to	exit	the	dialog	box.

Tutorial: Assigning Multiple Commands
You can assign more than one command to keyboard shortcuts. When two or more commands are
executed together, they are called macros. (Learn more about macros in Chapter 8.)

For example, to copy all objects in the drawing to the Clipboard takes two commands: Select All,
followed by CopyClip. The macros for each are as follows:
Select All ^c^c_selgrips;_all;;
CopyClip ^c^c_copyclip

To combine these two commands into a single keystroke shortcut, Ctrl+Shift+A, follow these steps:

1.	 Insert	a	new	keyboard	shortcut.

2.	 In	the	Add	Keyboard	Shortcut	dialog	box,	choose	one	command,	such	as	Copy	(CopyClip)	found	in	the	Edit	

section.

3.	 Click	OK	to	return	to	the	Customize	dialog	box.

4.	 Add	the	other	command,	Select	All,	by	editing	the	Command	section	of	the	Keyboard	Shortcut	area.	Add	the	

text	shown	in	boldface:
 ^c^c_selgrips;_all;;^c^c_copyclip

 10 Customizing Keystroke Shortcuts, Aliases, and Shell Commands 191

	 The	semicolon	(;)	is	a	metacharacter	that’s	equivalent	to	pressing	Enter.

Adding a shortcut keystroke to the macro

5.	 Add	the	shortcut	keystroke	to	the	Key	field:
 ctrl+shift+a

	 You	may	wish	to	update	the	Help	string	to	something	like,	“Copies	all	entities	to	the	Clipboard.”

6.	 Click	OK,	and	then	test	the	macro	by	pressing	ctrl+shift+A.	BricsCAD	reports:
 : _SELGRIPS
 Select entities to display grips: _ALL
 Select entities to display grips:
 : _COPYCLIP

	 Try	pasting	the	copied	objects	into	another	document	using	ctrl+V.

Customizing Command Aliases

As well as keystroke shortcuts, BricsCAD also allows you to define one- or more-letter command
shortcuts, called aliases. An alias typically is an abbreviation of a command name, such as L for the
Line command, and OS for OSnap (object snap).

You may wonder about longer aliases, such as Colour. Aliases can, in fact, be any length of charac-
ters, but when they are more than two or three characters in length, then they start to defeat the
purpose of aliases, which is to be brief. Long alias names are, however, useful for making BricsCAD
compatible with older versions with different command names, and with other CAD packages. For
instance, Colour is another name for the Color command.

BricsCAD predefines around 300 aliases. There’s a lot of them, because BricsCAD needs to have all
of AutoCAD’s aliases, plus more for BricsCAD commands that have changed names over previous
releases.

With recent releases of BricsCAD, aliases are being deprecated. No new aliases are being added.
This is because AutoComplete has taken over the task of entering a few letters to access an entire
command name. In the figure below, I typed in l-a-y.

Instead of memorizing aliases (some of them obscure) that work for many — but not all commands
— we now type the first one, two, or three letters of any command name to access all of them. Who
would know that ‘cui’ is an alias for Customize; AutoComplete lets new users type ‘cus’ instead.

192 Customizing BricsCAD V19

TIP	 Although	they	were	designed	to	reduce	keyboard	typing,	aliases	can	also	be	used	in	toolbar	and	
menu	macros.	However,	if	the	definition	of	the	alias	is	changed,	then	the	macro	will	no	longer	work.

TUTORIAL: CUSTOMIZING ALIASES

You access aliases, as follows:

1.	 Enter	the Customize	command.	(Or,	enter	the	Cui alias	at	the	‘:’	command	prompt.)	

2.	 Notice	the	Customize	dialog	box.	Click	the	Command Aliases tab.	

Customize dialog box showing the Command Aliases tab

	 This	version	of	the	dialog	box	looks	different	from	other	tabs,	in	that	it	has	just	two	panes,	plus	some	extra	

buttons	along	the	bottom

	 Alias-Command	pane	(at	the	left)	—	lists	all	aliases	already	defined.	Notice	that	an	alias,	such	as	-AT	is	

linked	with	the	-AttDef	command.

	 Commands pane	(on	the	right)	—	lists	the	names	of	all	commands	found	in	BricsCAD.

TIPS	 Aliases	are	stored	in	the	the	default.pgp	file.	
	
If	you’ve	created	aliases	with	AutoCAD,	you	can	import	them	into	BricsCAD	using	Notepad	to	open	the	
default.pgp	file.	Copy	and	paste	aliases	from	AutoCAD’s	acad.pgp	file.	
	
Unlike	keyboard	shortcuts,	aliases	cannot be	macros.	This	means	each	alias	supports	a	single	command	
only.

TUTORIAL: CREATING NEW ALIASES

In this tutorial, you create an alias for one of BricsCAD’s commands lacking an alias: J for the Join
command.

1.	 In	the	Customize	dialog	box’s	Command	Aliases	tab,	click	the	Add	button.

Adding an alias

 10 Customizing Keystroke Shortcuts, Aliases, and Shell Commands 193

2.	 Notice	the	Add Alias text	entry	box:

a.	 In	the	Alias	field,	enter	j.

Specifying the new alias character

b.	 From	the	Command droplist,	choose	Join.

Choosing the command from a droplist

c.	 Click	OK to	dismiss	the	dialog	box.

3.	 Click	OK	to	close	the	Customize	dialog	box.

4.	 Now	test	the	alias	by	entering	J	and	then	pressing	Enter.	BricsCAD	should	execute	the	Join command.

Tutorial: Editing & Deleting Aliases
To edit an alias, follow these steps:

1.	 In	the	Customize	dialog	box’s	Aliases	tab,	choose	the	alias	you	wish	to	edit,	such	as	the	J	you	defined	above.

2.	 Click	Edit.	(To	erase	an	alias,	click	Delete	instead.)	

Editing an alias

194 Customizing BricsCAD V19

BRICSCAD ALIASES SORTED BY COMMAND NAME

A
align	 al	
aperture	 ap	
apparent	 planviewint		
arc	 a	
area	 aa	
array	 ar	
attdef	 at,	ddattdef		
-attdef	 -at	
attdisp	 ad	
attedit	 -ate	
attext	 ax,	ddattext		
-attext	 -ax	

B
background	 backgrounds		
base	 ba	
blipmode	 bm	
block	 b
-block	 -b
boundary	 bo,	bpoly	
-boundary	 -bo	
break	 br	

C
centerline	 cl
centermark	 cm
chamfer	 cha	
change	 -ch	
circle	 c	
color	 col	
-color	 -col,	-colour		
color	 colour,	ddcolor,	ddcolour,	setcolor		
copy	 co,	cp	
copylink	 cl	
customize	 cui	
cylinder	 cyl	

D
ddedit	 ed	

ddgrips	 gr	
ddselect	 se	
ddvpoint	 setvpoint,	viewctl,	vp	
dist	 di	
divide	 div	
donut	 do,	doughnut		
draworder	 dr	
dsettings	 ddrmodes,	rm	
dview	 dv	
dxfout	 dx	

Dimensions
dim	 dimension		
dimaligned	 dal,	dimali		
dimangular	 dan,	dimang		
dimbaseline	 dba,	dimbase		
dimcenter	 dce	
dimcontinue	 dco,	dimcont		
dimdiameter	 ddi,	dimdia		
dimedit	 ded,	dimed	
dimlinear	 dimhorizontal,	dimlin,	
dimrotated,dimvertical,	dli	
dimordinate	 dimord,	dor	
dimoverride	 dimover,	dov	
dimradius	 dimrad,	dra	
dimstyle	 d,	ddim,	dimsty,	ds,	dst,	expdim-
styles,	setdim		
-dimstyle	 -dst	
dimtedit	 dimted		

E
eattedit	 ate	
ellipse	 el	
erase	 delete,	e	
expblocks	 bx,	xb	
explode	 x	
export	 dwfout,	exp	
expucs	 dducs,	uc	
extend	 ex	
extrude	 ext	

 10 Customizing Keystroke Shortcuts, Aliases, and Shell Commands 195

F
fillet	 f,	fi	

G
geographiclocation	 geo	
grid	 g	

H
hatch	 bh,	h	
-hatch	 -bh,-h	
hatchedit	 he	
hide	 hi	

I
id	 idpoint		
image	 expimages,	im	
imageadjust	 iad	
imageattach	 iat	
imageclip	 icl	
import	 imp	
insert	 ddinsert,	i	
-insert	 -i	
insertaligned	 insal	
insertobj	 io	
interfere	 inf	
intersect	 in	
isolateobjects isolate

isoplane	 is	

L
layer	 ddlmodes,	explayers,	la	
-layer	 -la	
layerstate	 las	
laymcur	 setlayer		
leader	 le,	lead	
lengthen	 editlen,	len	
light	 lighting		
lightlist	 ll	
line	 3dline,	l	
linetype	 ddltype,	expltypes,	lt	
-linetype	 -lt	
list	 li,	ls	
ltscale	 lts	

M
matbrowseropen matb

matchprop	 ma	
materialmap	 setuv	
materials	 finish,	mat,	rmat	
mirror	 mi	
mirror3d	 3dmirror,	3m	
move	 m	
mslide	 msnapshot		
mspace	 ms	
mtext	 mt,	t	
mview	 mv	

N
newwiz	 ddnew	

O
offset	 o	
oops	 undelete,	unerase		
open	 op	
options	 cfg,	config,	preferences,	prefs	
orthogonal	 or,	ortho	
osnap	 ddesnap,	ddosnap,	os,	setesnap		
-osnap	 esnap,-os	

P
pan	 p,	-p	
pastespec	 pa	
pedit	 editpline,	pe	
pline	 pl,	polyline		
point	 po	
polygon	 pol	
preview	 ppreview,	pre	
properties	 ch,	ddchprop,	ddmodify,	mo,	pr,	props	
propertiesclose	 prc	
pspace	 ps	
purge	 pu	
-purge	 -pu	
pyramid	 pyr	

Q
qnew	 n	
qtext	 qt	
quit	 exit	

196 Customizing BricsCAD V19

R
rectang	 rec,	rect,	rectangle		
redraw	 r	
redrawall	 ra	
regen	 re	
regenall	 rea	
region	 reg	
reinit	 ri	
rename	 ddrename,	ren	
-rename	 -ren	
render	 rr	
renderenvironment	 fog	
renderpresets	 roptions		
renderwin	 rendscr		
revolve	 rev	
rotate	 ro	
rotate3d																						3r,	3drotate		
rpref	 setrender		

S
save	 sa	
scale	 sc	
script	 scr	
section	 sec	
selgrips	 selgrip		
setucs	 dducsp,	ucp	
setvar	 set	
shade	 sha	
shademode	 vscurrent		
sketch	 freehand		
slice	 sl	
snap	 sn	
solid	 plane,	so	
spell	 sp	
spline	 spl	
splinedit	 spe	
stretch	 s	
style	 ddstyle,	expfonts,	expstyle,	expstyles,	st	
-style	 font	
subtract	 su	
sunproperties	 sun	

T
tablet	 ta	
-text	 -t	

text	 tx	
thickness	 th	
time	 ti	
tolerance	 tol	
torus	 tor	
trim	 tr	

U
union	 uni	
units	 ddunits,	un	
-units	 -un	

V
vbaide	 vba	
view	 ddview,	expviews,	v	
-view	 -v	
vplayer	 vl	
vpoint	 viewpoint,-viewpoint,-vp,-vpoint		
vports	 viewports,	vport,	vw	
vslide	 vs,	vsnapshot		

W
wblock	 w	
wcloseall	 closeall		
wedge	 we	
wmfin	 wi	
wmfout	 wo	

X
xattach	 xa	
xbind	 -xb	
xclip	 clip	
xline	 infline,	xl	
xref	 expxrefs,	xr	
-xref	 -xr	

Z
zoom	 z	

#
3darray	 3a,	array3d		
3dface	 3f,	face	
3dmesh	 mesh	
3dpoly	 3p	

 10 Customizing Keystroke Shortcuts, Aliases, and Shell Commands 197

3.	 In	the	Edit Alias dialog	box,	select	another	command,	and	then	click	OK.	

4.	 Click	OK to	exit	the	Customize	dialog	box.

RULES FOR WRITING ALIASES

Here are some suggestions Autodesk provides for creating command aliases:

•	 An	alias	should	reduce	a	command	to	two	characters	at	most.	

•	 Commands	with	a	control-key	equivalent,	status	bar	button,	or	function	key	do	not	require	a	command	alias.	

Examples	of	commands	to	avoid	include	the	New command	(already	assigned	to	ctrl+N),	Snap (already	on	

the	status	line),	and	Help (already	assigned	to	function	key	F1.

•	 Try	to	assign	the	first	character	of	a	command.	If	it	is	already	taken	by	another	command,	assign	the	first	two,	

and	so	on.	For	example,	C is	assigned	to	the	Circle command,	while	CO is	assigned	to	the	Copy command.

•	 For	consistency,	add	suffixes	for	related	aliases.	For	example,	H is	assigned	to	the	Hatch command,	so	assign	

HE to	HatchEdit.	

Tutorial: Hand-Coding Aliases
If you wish to write your aliases directly, open the default.pgp file with a text editor. In Windows,
open the file in Notepad (or Text Editor in Linux, or TextEdit in Mac). The .pgp file is found in the
following locations:

	 Windows	—		C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\Support\default.pgp

	 Linux	—	/home/<login>/Bricsys/BricsCAD/V19/en_US/Support

	 Mac	—	/Users/<login>/Library/Preferences/Bricsys/BricsCAD/V19x64/en_US/Support

In all cases, the beginning of the file’s Command Aliases section looks like this:

To add a new alias, mimic the format shown above:
 alias, *commandName

Enter the alias name followed by comma, space, asterisk, and the command name.

Text editor showing the content of the Default.pgp file

198 Customizing BricsCAD V19

When done, press Ctrl+S (or Cmd+S on Macs) to save the file. Back in BricsCAD, use the ReInit
command to reload the .pgp file.

Customizing Shell Commands

The final tab in the Customize dialog box is labelled Shell Commands. It is meant for customizing
shell commands, which are almost never used anymore.

They are a holdover from the days of DOS (disk-based operating system), from before Windows
allowed multiple programs to run on PCs. The DOS operating system limited computers to running
one program at a time. (Additional programs, called “TSRs” [short for terminate but stay resident],
could be loaded into memory and accessed, but they had to be very small and be specially coded.)

If you wanted access a text editor or another useful program while running CAD, then you could
“shell out” of the program, run the text editor, and then return to the CAD program. The CAD program
suspended operations while the text editor was running. This was done with the Shell command,
sometimes known as running an “external command.”

Today, the Shell command is no longer necessary, because Windows lets us run many programs at
the same time as we want, switching between them effortlessly. But Shell still works in BricsCAD
and can be a handy way to access other software. For example, instead of starting a text editor by
navigating through the Windows Start menu, you can type “notepad” at the BricsCAD command
prompt:
: notepad
File to edit: (Enter a file name)

After you enter a file name, Windows launches Notepad with the file. When you enter the name of
a file that does not exist, Notepad offers to start a new file with that name, as shown below.

Starting a new text file

 10 Customizing Keystroke Shortcuts, Aliases, and Shell Commands 199

To load a file at the same time as executing the external command, include the file name with the
command name, like this:
Shell Command: start notepad default.pgp

When the name of the command and/or file have spaces in them, you’ll need to use quotation
marks around them, like this:
Shell Command: start notepad "c:\program files\bricsys\bricscad V19\default.pgp"

Quotation marks let the operating system differentiate between spaces that separate commands
from spaces that are part of a file or path name.

Shell commands are stored in the same default.pgp file as aliases, and so is found in the following
folder: C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US/Support .

The shell portion of file has not been adapted for use with Linux and Mac, because of shell com-
mands’ history stemming from DOS.

The Shell Commands section of the default.pgp file looks like this:
 DEL, DEL, 8, File to delete: ,
 SH, , 1, *OS Command: ,
 SHELL, , 1, *OS Command: ,
 START, START, 1, *Application to start: ,
 NOTEPAD, START NOTEPAD, 1, *File to edit: ,

There are four components that define a shell command:

	 Alias —	specifies	an	alias	for	the	shell	command.	It	can	be	any	word	not	already	used	by	the	default.pgp	file.	

	 Shell Command	—	specifies	the	name	of	the	command	sent	to	the	operating	system.	Notice	that	for	Note-

pad	there	are	two	words,	Start	and	Notepad:

	 Start is	the	command	that	executes	another	command,	Notepad	in	this	case.	Leave	out	the	“.exe”	ex-

tension	of	the	command	name.	If	the	shell	command	needs	to	also	specify	a	file	name,	it	is	entered	here,	

as	I’ll	show	you	later.	

	 Prompt —	specifies	the	wording	of	a	prompt	to	display	in	the	command	bar.	This	can	be	blank	or	consist	of	

some	helpful	words,	such	as	“File	to	edit.”

In addition, there is a flags field at the end of each line. It is left blank, because BricsCAD does not
support flags. If it ever did, here is what they would mean:

Flag Meaning

1 On: BricsCAD does not wait for the application to finish before returning to the command prompt.
 Off: BricsCAD waits for the application to finish.

2 On: The applications runs minimized; i .e ., on the task bar .
 Off: The application runs normally, ie, displayed on the screen .

4 On: The application does not appear .
 Off: The application appears on the screen .

8 On: The shell command uses quotation marks; required when the name of the file contain spaces.
 Off: The shell command does not use quotation marks .

200 Customizing BricsCAD V19

TUTORIAL: EDITING SHELL COMMANDS

Shell commands are defined by the Shell Commands tab of the Customize dialog box. To see how
they work, we’ll look at one of the existing commands, Notepad. Follow these steps:

1.	 Enter	the	Customize	command.

2.	 In	the	Customize	dialog	box,	select	the	Shell Command	tab.	Notice	that	a	few	commands	are	already	defined.	

Adding a shell command

3.	 To	edit	a	shell	command,	select	one	of	them	and	click	the	Edit	button.	For	this	tutorial,	select	“Notepad,”	and	

then	click	Edit.	Notice	the	Edit	Shell	Command	dialog	box.

Editing a shell command

TIP	 It’s	not	a	good	idea	to	use	the	names	of	existing	BricsCAD	commands	or	aliases;	if	you	do,	BricsCAD	
complains,	“Cannot	use	the	name	for	a	shell	command	alias,	because	it	already	exist	as	a	normal	alias.”

4.	 Make	changes	to	the	parameters,	such	as	the	alias	or	prompt.

5.	 Click	OK to	exit	the	dialog	box,	and	then	click	OK	to	exit	the	Customize	dialog	box.

6.	 Test	the	new	customization.

The process for adding a new shell command is similar.

Customizing Mouse,
Double-click, and Tablet

Buttons

CHAPTER SUMMARY

This chapter covers the following topics:

• Understanding how commands are assigned to mouse and tablet buttons and double-click actions

• Assigning commands, macros, and shortcut menus to mouse buttons

• Assigning actions to double-click actions and tablet buttons

The mouse is your constant companion in BricsCAD, and you can customize its buttons, as
well of those on a stylus or puck used with digitizing tablets. BricsCAD does not, however, explicitly
support touch screens and styli used with Windows 8.x and 10. BricsCAD supports 3D mice, but
its buttons are customized by the utility software provided with them

The Customize dialog box in BricsCAD is where you go to change the meanings of up to two but-
tons on mice, and up to 15 buttons on tablet input devices:

	 Mouse tab	—	assigns	macros	to	the	right	and	middle	buttons,	along	with	Shift,	Ctrl	(Cmd	on	Macs),	and	

Shift+Ctrl	keys;	these	are	called	“clicks.”	You	can	also	assign	macros	to	double-click	actions.

	 Tablet tab	—	assigns	macros	to	buttons,	along	with	Shift	key

CHAPTER 11

202 Customizing BricsCAD V19

SUMMARY OF MOUSE COMMANDS & VARIABLES

These are the system variables that affect the use of mice with BricsCAD:

Variable Meaning

CtrlMouse Toggles specific key-button combinations; when on, the following work:
 Ctrl+Left button 3D view rotation
 Ctrl+Rigth button 3D viewing with fixed z axes
 Ctrl+Shift+Left button Real-time zooming
 Ctrl+Shift+Right button Real-time panning

Ctrl3DMouse Toggles the use of 3D mice with BricsCAD (must restart the program after):
 0 (Off) Disables 3D mouse
 1 (On) Enables 3D mouse

MButtonPan Specifies the function of the middle button:
 0 (Off) Carries out the action defined by the Customize command
 1 (On) Pans drawing while dragging with middle button held down; default

ShortcutMenu Specifies what happens when you press the right mouse button:
 1 Enable default mode shortcut menus
 2 (Default) Display shortcut menu for editing
 4 Display shortcut menu for commands during any command
 8 Display shortcut menu for commands when command options are active
 16 (Default) Display the shortcut menu when right button is held down longer

ShortcutMenuDuration Specifies how long to hold down the right button until a shortcut menu appears:
 250 (Default) Time in milliseconds, or 1/4 second

ZoomFactor Sets the zoom speed:
 3 Slowest speed, helpful for very slow zooming
 60 Default speed
 100 Fastest speed, useful for very large drawings

ZoomWheel Determines the scroll wheel’s zoom direction:
 0 (Off) Moving wheel forward zooms in; default
 1 (On) Moving wheel forward zooms out; Mac-like zoom

The following command works with tablets:

Tablet — toggles use of the tablet, and configures tablet surfaces.

 11 Customizing Mouse, Double-click, and Tablet Buttons 203

About Mice and Their Buttons

The very first computer mouse had three buttons. Since then, the button count on mice has strayed
in different directions. Some mice have many more than three buttons, while others sport no but-
tons at all.

Left to right: An early mouse with three buttons; a modern mouse of many buttons; and an Apple mouse with no buttons

For instance, I use the Logitech MX mouse with my primary work computer. It has nine buttons (I
think) that offer functions like moving forward-reverse through Web pages and side-to-side scroll-
ing. Other mice, such as one model from Apple, have no buttons at all: you tap, slide, pinch, and
otherwise move your fingers on the smooth surface, as if it were a touchpad.

Mouse Buttons. Whether the mouse has three, nine, or zero buttons, BricsCAD customizes only
two of them — the ones traditionally named “middle” and “right.”

The left mouse button is never customized as it performs the all-important picking function.

Left button (#1, pick)

Right button (#2)

Middle button (#3)

BricsCAD’s 1-3-2 numbering of left, right, and center buttons on mice

Modifier Keystrokes. You can define more than two actions for each button by adding Shift, Ctrl
(on Macs, the Cmd button), and Shift+Ctrl keys to buttons.

So, when you hold down the Shift key while clicking the right button, BricsCAD executes a different
command from when you click the right button alone.

Double-clicking. The other way to access more commands through the mouse is with double-
clicking. When you double-click an entity in the drawing, BricsCAD runs a command suitable to
editing the entity.

204 Customizing BricsCAD V19

QUICK SUMMARY OF DEFAULT BUTTONS

Sometimes you might see buttons referred to by number. Here is what the numbers mean:

Button Number

Left 1
Right 2
Center 3

DEFAULT ACTIONS

BricsCAD assigns these macros to the right and center mouse buttons through the Mouse tab of the Customize dialog box: :

Keystroke+Button Action Macro

Right button Repeats last command unassigned
Middle button Displays object snap shortcut menu $p0=SNAP $p0=*

Shift+
Right button Displays Entity Snap shortcut menu unassigned
Middle button Real-time rotation unassigned

Ctrl+
Right button Real-time rotation about z axis unassigned
Middle button Displays object snap shortcut menu unassigned

Shift+Ctrl
Right button Real-time pan unassigned
Middle button Real-time rotation unassigned

WALKTHROUGH BUTTONS

Walkthrough navigation in perspective views uses the following mouse buttons and keystrokes:

Mouse Button Command Meaning

Alt + Left button RtWalk Walks forward, backwards, and sideways
Alt + Middle button RtUpDown Moves up, down, and sideways
Ctrl + Middle button RtLook Looks around

Ctrl + Home key . . . Resets view direction to the horizontal
Alt + Home key . . . Moves target point to the center of the scene
Alt + Plus key RtWalkSpeedFactor Increases walking speed
Alt+Minus key RtWalkSpeedFactor Decreases walking speed
Ctrl + Plus key RtRotationSpeedFactorIncreases rotation speed
Ctrl+Minus key RtRotationSpeedFactorDecreases rotation speed

TABLET BUTTONS

BricsCAD assigns no macros to stylus or puck buttons, by default. This can be done through the Tablet tab of the Cus-
tomize dialog box.

 11 Customizing Mouse, Double-click, and Tablet Buttons 205

Most double-click actions bring up the Properties panel, if it isn’t already visible. The remainder are
assigned to entity-specific commands, such as HatchEdit for hatch patterns or double-clicking a
dimension starts the DdEdit command for editing its text. You can customize double-click actions.

Delayed Press. There is one more mouse action available for invoking commands. When you hold
down the right mouse button longer than 250 milliseconds, then BricsCAD can carry out a different
command. The command, however, cannot be customized by you.

(Some CAD packages execute commands through mouse gestures, where the mouse’s dictional
movements are interpreted as commands. This is not available in BricsCAD.)

The Customize dialog box’s Mouse tab lists the possibilities, as shown below. The only button al-
ready assigned is Click (left button); it displays the Snap Menu. The other buttons are unassigned.

Customize dialog box’s Mouse tab showing button definitions

Here is how to read the content of the Mouse tab: under Click, there are two entries: the first (-----)
is for button #2, and the second (Snap Menu) is for button #3.

The remaining entries are for keyboard modifiers to buttons — Shift, Ctrl, and Shift+Ctrl — such
as Shift-Click.

At the end is the section for double-click actions

About the Pick Button
You cannot customize the pick button (left button) for good reason. You never want to lose the
ability to pick things in the user interface or the drawing! BricsCAD doesn’t let you customize the
pick button in combination with keystrokes, either.

About the Right Button
The	right	button	almost	always	has	two	specific	functions:

In the drawing area —	ends	the	current	command	or	restarts	the	last	command

In most user interface elements	—	accesses	shortcut	menus,	just	like	in	other	programs

206 Customizing BricsCAD V19

About the Middle Button
The middle button is often used as a quick way to pan and zoom around the drawing:

Panning	—	hold	down	the	middle	button,	and	then	drag	the	mouse	to	pan

Zooming	—		roll	the	scroll	wheel	back	and	forth	to	zoom	in	and	out	at	the	cursor

Oribting	—	hold	down	the	Shift	key,	hold	down	the	middle	button,	then	drag	the	mouse	around	to	orbit	in	

3D	about	the	cursor

TIP	 When	you	zoom	and	orbit	using	the	middle	button,	the	action	takes	place	whereever	the	cursor	
is	in	the	drawing.	For	example,	when	you	roll	the	scroll	wheel	to	zoom	in,	you	zoom	into	where	the	cursor	
is	located.	This	is	great	for	zooming	into	a	specific	place	in	the	drawing:	just	move	the	cursor	there,	and	
then	scroll.

If your mouse has a scroll wheel (most do, these days), then the wheel is the middle button: to drag,
hold down the scroll wheel and then move the mouse.

Troubleshooting
If panning and zooming do not work as you expect, then there are two settings to check out.

 Ð Enter the MButtonPan variable to ensure it is set to On. When on, then the middle button pans the drawing.
When off, the middle button carries out the action defined in the Customize dialog box.

 : mbuttonpan
 New current value for MBUTTONPAN (Off or On) <Off>: on

 Ð If the middle button is still not panning the drawing, then you may need to change the button’s definition in the
mouse’s utility software. For example, if you use the Logitech’s SetPoint software to define the middle button as
“Double Click” or anything else, then this overrides the definitions assigned by BricsCAD. To fix the no-panning
problem, change the mouse driver’s definition back to “Middle Button,” as illustrated below.

Software for defining Logitech mouse button actions

Me, I used to always define the middle button for double-clicks, which is an especially efficient
way of getting around Windows. But this interferes with the CAD program’s ability to pan using
the middle button. So I now define the double-click action to one of the side-mounted buttons on
my nine-button mouse.

 11 Customizing Mouse, Double-click, and Tablet Buttons 207

OTHER INPUT DEVICES

Many weird and wonderful input devices have been invented during the course of computing his-
tory, such as 100-button boxes, voice input, and virtual reality goggles. Here I will concentrate on
three supported by BricsCAD: digitizing tablets, 3D mice, and touch screens.

Digitizing Tablets
Even before mice were invented, digitizing tablets were the most popular way to control CAD
software. Other input devices in the 1970s and early 1980s included the light pen and of course
the keyboard.

Tablets are dual purpose, allowing users to input commands and draw-edit the model.They ranged
in size from a piece of paper to covering an entire desk.

Left: Intergraph workstation with two monitors and desk-size digitizer in the 1970s

(Image source design.osu.edu/carlson/history/lesson10.html)

Right: Typical 12"x12" digitizing tablet used in the 1980s with four-button puck, stylus, and connecting cables
(Image source www.biocomp.net/o12691.htm)

Pucks had a minimum of four buttons, and were available with 12 or 16 buttons. The pucks used
for input are precise (unlike today’s mice), because they use absolute positioning. (Mice use rela-
tive positioning — it doesn’t matter where the mouse is positioned on the desk.) Also available for
input was a stylus, like the styli used today with certain touch screen computers and mobile devices.

Some CAD users still employ the legendary digitizing tablet. It is, however, increasingly difficult to
use older models as most computers no longer have the serial port needed to connect the tablet;
you can buy serial ports as an add-on to for desktop computers.

Tablet support is included with BricsCAD, as described later.

3D Mice
The 3D mouse is designed to make work with 3D drawings easier. It features a puck that you move
up and down in the z direction, as well as twist and rotate for 3D view rotations.

In practice, you use two mice:

 Ð The regular “2D” mouse for choosing commands and picking objects

 Ð The puck of the 3D mouse for moving the viewpoint

Users typically employ the regular mouse with the right hand, and the 3D mouse with the left.

208 Customizing BricsCAD V19

The 3D mice range in size from simple wireless puck with two buttons to multi-button behemoths
sporting a customizable LCD display. The movement of the puck and the buttons can be customized.

Left: Two-button 3D mouse; right: multi-button 3D mouse with LCD screen (image source 3Dconnexion)

BricsCAD supports 3D mice from 3Dconnexion, but before it can recognize a 3D mouse, the 3Dcon-
nexion device driver must be installed on your computer. Driver software is included for computers
running recent releases of Windows, MacOS, and Linux. For support and downloads, see http://
www.3dconnexion.com/supported-software/mechanical-engineering/bricscad.html. You may
need to reboot your computer after installing the 3Dconnexion driver.

There are no controls in BricsCAD for 3D mice, with the exception of the Ctrl3DMouse variable; it
enables and disables the 3D mouse.

The actions of the 3D mouse’s buttons and puck are defined by the 3Dconnexion Properties soft-
ware, as illustrated below.

Settings for multi-button SpacePilot Pro mouse

Touch Screens

BricsCAD does not officially support touch screens. But they are common with computers running
Windows 8.x and 10, and so I thought I should touch on the subject here. Pardon the pun.

The touch actions supported by BricsCAD are just those supported by Windows itself. Below I list
the touch actions supported by Microsoft in Windows, and the reaction from BricsCAD.

 11 Customizing Mouse, Double-click, and Tablet Buttons 209

Touch Action Effect in Windows Effect in BricsCAD

One-finger actions
Tap Equivalent to clicking (selecting item) Picks points while drawing entities;
 Selects individual entities and grips;
 Selects UI elements, like ribbon buttons
Press and hold Equivalent to right-clicking Displays right-click menus;
 Does not cancel or restart commands
Flick up or down Scrolls page down or down Has no effect
Drag vertically Scrolls page up or down Moves drawing and dialog box scroll bars
Drag horizontally Selects text Selects text in command bar

Touch Action Effect in Windows Effect in BricsCAD

Two-finger actions
Pinch Zooms in or out Zooms in and out
Rotate Rotates clockwise or counter-clockwise Has no effect
Hold and tap * Equivalent to press-and-hold Same as press-and-hold

*) Press the element with one finger, then quickly tap with another finger, while continuing to press the item with the first finger. Access shortcut menus like press

and hold and right-clicking .

While many screens support up to ten fingers touching at the same time, Windows supports just
one- or two -finger touches. Individual applications can support more simultaneous touches, if
they wish

Touch Pads
Mac computers do not support touch screens. The MacOS operating system does, however, sup-
port touch pads, whose actions are listed below. (Image source Logitech.)

Touch Action Effect in iOS Effect in BricsCAD

One-finger Actions
Tap Equivalent to clicking (selecting item) Picks points while drawing entities;
 Selects individual entities and grips;
 Selects UI elements, like toolbar buttons
Two-finger Actions
Tap Equivalent to right-clicking Cancels and restarts commands
Double-tap Smart zoom to element Has no effect
Pinch Zooms in or out Has no effect
Rotate Rotates clockwise or counter-clockwise Has no effect

Three-finger Actions
Drag Moves elements, like dialog boxes Zooms in and out

Note: Four-finger actions are not supported by BricsCAD.

210 Customizing BricsCAD V19

Defining Actions for Mouse Buttons

In summary, you can assign the following types of actions to mouse buttons:

 Ð Single-click actions — to right and center buttons only

 Ð Shift, Ctrl, and Alt keystrokes — to assign additional actions to right and center buttons

 Ð Double-click actions — to the left button only

 Ð Commands, macros, and shortcut menus — can be assigned as actions to buttons

In	BricsCAD,	the	Customize	dialog	box’s	Mouse	tab	consists	of	three	panes:

Customize dialog box showing the Mouse tab

 Ð Click pane (at the left) — lists the mouse buttons and key combinations that can be assigned actions

 Ð Available Tools pane (at the right) — lists all of BricsCAD’s commands sorted by menu name, and shortcut
menus; to assign a command or menu to a button, just drag it from this pane into the appropriate button in
the Clicks pane

 Ð Button Item pane (at the bottom) — edits button settings

TUTORIAL: BUTTON ASSIGNMENT

In this tutorial, you assign the Move command to the Ctrl+right button by following these steps:

1.	 From	the	Tools menu,	select	Customize.	Notice	the	Customize	dialog	box.

	 (Alternatively,	enter	the	Customize	command,	or	enter	the	cui	alias.	Or,	else	right-click	any	toolbar,	and	then	

choose	Customize	from	the	shortcut	menu.)

2.	 Choose	the	Mouse tab.	See	figure	above.

 11 Customizing Mouse, Double-click, and Tablet Buttons 211

3.	 The	mouse	button	you	are	defining	will	be	pressed	in	conjunction	with	the	Ctrl	key,	and	so	you	need	to	ac-

cess	the	correct	part	of	the	pane.	Do	it	like	this:	

a.	 Open	the	Mouse Buttons	node	by	clicking	the	 	button.

Opening the Mouse Buttons node

b.	 Open	the	Ctrl-Click node.

Opening the Ctrl+Click node

	 Notice	that	under	Ctrl-Click	there	are	two	blank	entrie:	each	button	is	labeled	with	‘------’.		The	first	‘------’	refers	

to	the	right	button	and	the	second	one	to	the	middle	button.	Click	and	then	look	at	the	bottom	pane,	where	

the	button	name	is	identified.

Identifying the right button

	 I	think	it	is	a	bug	in	BricsCAD	that	the	default	actions	are	not	listed.	These	default	actions	are	turned	on	and	

off	with	the	CtrlMouse	variable,	as	described	by	the	boxed	text	earlier,	“Summary	of	Mouse	Variables.”

4.	 To	attach	the	Move	command	to	this	button,	drag	the	Move	tool	onto	the	button,	like	this:

a.	 In	the	Available	Tools	pane,	open	the	Modify	node.

Choosing a command from the list of Available Tools

b.	 Choose	the	Move	tool.

212 Customizing BricsCAD V19

c.	 Drag	it	to	the	correct	button	position	under	Ctrl+Click,	as	shown	above.	Notice	that	the	Move	command	

now	occupies	the	first	mouse	button	position	under	Ctrl-Click	(see	figure	above).

TIP	 If	you	drag	the	tool	to	the	wrong	button,	then	no	worries.	Just	drag	it	to	the	correct	one.

	 In	the	Bttton	Item	pane,	notice	that	there	are	no	properties	for	you	to	edit.	BricsCAD	changes	the	Button	

property	for	you	when	you	move	the	tool	to	another	button.

No properties for new buttons

	5.	 With	Move	assigned	to	the	Ctrl+Click	right	button,	it’s	time	to	test	it:

a.	 Click	OK	to	save	the	changes	and	exit	the	Customize	dialog	box.

b.	 In	the	BricsCAD	drawing	window,	hold	down	the	Ctrl	key,	and	then	press	the	mouse’s	right	button.	The	

Move	command	should	start	up.

TUTORIAL: ASSIGNING SHORTCUT MENUS TO BUTTONS

To attach a shortcut menu to a mouse button, follow the same steps as above. When it comes to
step 4, however, you do things just a touch differently. Follow these steps:

4.	 In	the Available Tools	pane,	scroll	down	to	the	last	tool,	which	is	named	“Context.”

a.	 Open	the	node	to	see	the	list	of	shortcut	menus	(a.k.a.	context	menus).

Context (right-click) menus available in BricsCAD

 11 Customizing Mouse, Double-click, and Tablet Buttons 213

b.	 Choose	a	menu	tool,	and	then	drag	it	to	the	desired	button	position.

Dragging a context menu to a button, from left to right

Tutorial: Writing Macros for Buttons
In addition to commands and shortcut menus, you can attach macros to buttons in two steps:

1.	 Drag	any	tool	onto	a	button,	as	described	in	the	tutorial	“Defining	Actions	for	Buttons.”	The	tool	doesn’t	

matter,	just	make	sure	it	isn’t	one	taken	from	the	Context	node.

2.	 Edit	the	tool’s	Command	property:

A macro being written in the Command field

See Chapter 8 for information on writing macros.

CUSTOMIZING DOUBLE-CLICK ACTIONS

When you double-click an entity, BricsCAD performs an action that is related to the entity. For
instance, double-click a hatch pattern, and the Edit Hatch dialog box appears; double-click some
text and a text editor appears.

If an action is not defined for an entity, then BricsCAD displays the Properties panel. Not that there
is anything wrong with it; the Properties panel in fact is sometimes more powerful than the des-
ignated editing command.

Here is a list of the default double-click actions that don’t launch the Properties panel:

Entity Double-click Command

Array (associative) ArrayEdit
Attribute definition DdEdit
Attribute in block EAttEdit
Block BEdit
Dimension DdEdit (edits dimension text)
Hatch pattern HatchEdit dialog box
Image ImageAdjust
LwPolyline (modern polyline) PEdit
Multiline leader DdEdit (edits leader text)

214 Customizing BricsCAD V19

Polyline PEdit
Section plane object ClipDisplay (toggles clipping on and off)
Spline SplinEdit
Text (single-line text) DdEdit
Tolerance DdEdit (to edit the text in the tolerance)
Xref (external reference file) RefEdit

Changing a Double-click Action
We are going to assign the Join command to the arc entity. Even better, we will turn it into a macro
that closes any arc that you double-click. Closing an arc makes it a circle.

To change the action assigned to a double-click, follow these steps.

1.	 Open	the	Customize	dialog	box	with	the	cui	alias,	and	then	click	the	Mouse	tab.

2.	 Scroll	down	until	you	reach	the	Double-click	section.

3.	 Open	the	node.	Notice	the	list	of	entity	names.

Double-click section of the Customize dialog box

4.	 To	change	the	action	associated	with	an	entity,	select	the	name	of	the	entity.	For	this	tutorial	select	Arc.

5.	 You	cannot	just	edit	the	Command	property,	because	then	the	double-click	action	will	not	work,	I	find.	In-

stead,	follow	these	steps:

a.	 Click	the	Tool ID	property.	Notice	the	Browse	button	at	the	far	right	end.	

b.	 Click	the	Browse	button.	Notice	the	Select	Tool	dialog	box.

c.	 Go	to	the	Modify	node,	and	then	choose	the	Join	tool.

Selecting Join from the list of tools

 11 Customizing Mouse, Double-click, and Tablet Buttons 215

d.	 Click	OK.

6.	 Back	in	the	Customize	dialog	box,	notice	that	BricsCAD	has	filled	in	all	the	properties	for	the	Join	command.	

Now	you	can	edit	the	command	macro	to	make	it	close	arcs,	like	this:

a.	 Click	in	the	Command	field.

b.	 Add	the	text	shown	in	blue:
 ^C^Carc;cl;

c.	 And	you’re	done.	

7.		 Test	the	change	you	made,	like	this:

a.	 Click	the	OK	button	to	exit	the	Customize	dialog	box.

b.	 Use	the	Arc	command	to	draw	an	arc.

c.	 Double-click	the	arc:	it	should	close	into	a	circle.

Making a New Double-click Action
Not all entities are listed in the Mouse tab’s Double-click section. To see the full list — and to create
a new command that offsets xlines — follow these steps:

1.	 Right-click Double-click action,	and	then	choose	Append double-click action	from	the	shortcut	menu.

Adding an entity to the list

	 Notice	the	Add	double-click	Action	dialog	box.	

3.	 Click	the	DXF Name droplist,	and	then	choose	an	entity	type.	For	this	tutorial,	scroll	all	the	way	down	to	

XLine.

4.	 With	the	entity	chosen,	now	it’s	time	to	assign	a	command	to	the	double-click	action,	and	so	choose	the	Cre-

ate New Tool radio	button.

216 Customizing BricsCAD V19

5.	 From	the	Toolbox	droplist,	chose	a	BricsCAD	command	to	apply.		For	this	tutorial,	we’ll	choose	the	Offset	

command.		

6.	 	Now	fill	out	all	the	fields	that	are	blank	in	the	dialog	box		—		Name,	Title,	Help,	Command,	and	even	Image	—	

because	if	you	leave	one	or	more	blank,	then	the	OK	button	remains	unavailable.	

	 (To	add	an	image,	click	the	Browse	button	at	the	far	end	of	the	Image	field,	and	then	chose	an	icon	from	the	

hundreds	provided	by	BricsCAD.)

7.	 Click	OK	to	close	the	dialog	box.	Notice	that	the	Double-click	Action	pane	has	all	of	its	fields	filled	out,	be-

cause	you	filled	them	out.

8.	 If	you	wish,	edit	the	Command	macro	to	provide	the	Offset	command	with	a	set	offset	distance,	and	so	on.

9.		 Your	final	step	is	to	test	the	change	you	made,	like	this:

a.	 Click	the	OK	button	to	exit	the	Customize	dialog	box.

b.	 Use	the	XLine	command	to	draw	a	construction	line,	and	then	press	Esc	to	end	the	command.

c.	 Double-click	the	xline:	the	Offset	command	should	launch,	prompting	you	for	the	offset	options.

 11 Customizing Mouse, Double-click, and Tablet Buttons 217

Defining Actions for Tablet Buttons

Tablet digitizer buttons are customized in the Tablet tab, as illustrated below.

Customize dialog box showing the Tablet tab

Now, normally there are no entries under Digitizer Buttons and Tablet Menus, because BricsCAD
includes nothing for tablets with the Default profile. If you use a tablet, then you need to download
the partial CUI files for tablet buttons and drawings overlays from the Bricsys Web site.

At time of writing, the Web site no longer appeared to host the file, so you can download it from my
Dropbox account: https://www.dropbox.com/s/1w4euu6hvq8ckyj/Tablet.zip?dl=0.

After the Tablet.zip file is downloaded, unzip it. Notice that it contains two partial .cui files — tablet.
cui and tablet(acadLike)cui — along with several support files that not necessary right now.

Listing of files inside the Tablet.zip archive

Back in BricsCAD, open the Customize dialog box, and then click File | Load Partial CUI File (or
use the MenuLoad command).

Loading a partial .cui file

218 Customizing BricsCAD V19

220 Customizing BricsCAD V19

In the Choose A Customization File dialog box, select tablet.cui and then click Open. Notice that
the Customization dialog box now lists two sections for tablet buttons and menus.

Button and menu definitions added to support digitizing tables

TIP	 Use	the	Tablet	command	to	configure	and	calibrate	the	overlay	on	the	surface	of	the	tablet.	This	
command	works	only	after	a	tablet	is	attached	to	the	computer,	and	its	drivers	have	been	installed,	includ-
ing	WinTab32.dll.	See	“Digitizing	Tablet”	in	the	BricsCAD User Guide portion	of	the	online	help	system.

To attach commands, macros, or shortcut menus to buttons, follow the steps described in the for
mouse buttons — just do your work in the Click section of Digitizer Buttons, as illustrated below.

Default puck button assignments

The properties for digitizer buttons are pretty similar to that of mouse buttons:

Puck button properties

The tablet overlay drawing provided by Bricsys is illustrated on the other pages. Use overlay(cm).
dwg for metric drawings and overlay(inch).dwg for Imperial drawings.

Customizing the Quad

CHAPTER SUMMARY

This chapter covers the following topics:

• Understanding how the quad works

• Customizing the commands and groups displayed by the quad

The trend in CAD user interface design is to move more of the action to the cursor, and so
Bricsys developed the Quad interface to do just that: it allows us to select from an array of com-
mands that are positioned very near the cursor.

The Quad is somewhat customizable, though sadly not as fully customizable as are menus or toolbars.
BricsCAD uses workspaces to determine which groups of commands are displayed by the Quad,
because the area available for commands in the Quad is much smaller than say the ribbon. This
means that there are commands specific to sheet metal that appear in the Sheet Metal workspace,
BIM commands for the BIM workspace, and so on.

What can be customized of the Quad’s interface is done through the Customize dialog box, and is
the subject of this chapter.

CHAPTER 12

222 Customizing BricsCAD V19

QUICK SUMMARY OF QUAD VARIABLES

To turn the quad on and off, press the F12 function key. There is no “Quad” command. The following variables control
the many aspects of the Quad; blue indicates the variable is new to V19:

QuadAperture — specifies the area to search around the cursor for entities, sized in pixels

QuadCommandLaunch — determines if Quad launches with the application

QuadCommandSort — specifies sort order of commands

QuadDisplay — toggles display of the Quad cursor

QuadExpandDelay — specifies the delay before expanding the Quad, in milliseconds

QuadExpandTabDelay — specifies the delay before expanding underlaying buttons

QuadExpandGroup — specifies how groups expand

QuadGoTransparent — toggles Quad’s transparency

QuadHideDelay — specifies the delay to display the Quad following mouse movement

QuadHideMargin — specifies the delay before Quad is hidden, in msecs

QuadIconSize — toggles the Quad between displaying small, large, or extra large icons

QuadIconSpace — specifies spacing between icons

QuadMostRecentItems — determines the number of most-recent items on the Quad

QuadPopupCorner — locates the Quad relative to cursor

QuadShowDelay — specifies the Quad’s display delay after an entity is highlighted

_QuadTabFlags — determines style of Quad

QuadTooltipDelay — specifies the delay before tooltips appear, in msecs

QuadWarpPointer — determines how the Quad interacts with cursor

QuadWidth — specifies the width of the Quad, in columns

ON THE STATUS BAR

On the status bar, click QUAD to turn it on and off. Right-click the button to reveal this shortcut menu:

 Show Quad on Hover	—	QuadDisplay	variable	=	1
 Show Quad on Select	—	QuadDisplay	=	2
 Show Quad on Right-click	—	QuadDisplay	=	4
 On	/	Off	—	toggles	display	of	Quad,	like	clicking	QUAD	on	the	status	bar	(QuadDisplay	=	-1)
 Customize Quad Items —	displays	Workspaces	tab	of	Customize	dialog	box	for	changing	the	com-

mands	and	groups	displayed	by	the	quad
 Settings	—	goes	to	the	Quad	section	of	the	Settings	dialog	box

 12 Customizing the Quad 223

ABOUT THE QUAD

The Quad interface is unique to BricsCAD. It incorporates information about entities, along with
drawing and editing functions into a rectangle that’s right next to the cursor.

The Quad cursor, fully expanded

STEP 1: MOVE CURSOR ONTO AN ENTITY

Most of the time, the Quad is not visible; most of the time, you see the usual crosshair cursor. When,
however, you pass the cursor over an entity, the entity highlights and the Quad appears as a single
button. See figure below. (If you do not see the Quad, then turn it on clicking QUAD on status bar
or pressing the F12 function key.)

Initial appearance of the Quad

The initial button shows two things:

 Ð Last-used Command — on the left is the command (shown by the icon) that you last accessed on the Quad

 Ð Rollover Tooltip — to the right of the icon are several properties of the highlighted entity (if RT is turned on)

Last-Used Command. The single button is the icon of the last-used command. By clicking it,
you can quickly repeat the last command multiple times.

Rollover Tooltip. The name and the list of the entity’s properties are together called
a “rollover tooltip,” because it appears when the cursor “rolls over” an entity. (If the rollover tooltip
does not appear in the Quad, then click the RT button on the status bar to turn it on.)

224 Customizing BricsCAD V19

By moving the cursor into the rollover tooltip, you can change the properties of the highlighted
entity. Click on a property values, such as Color, to see a droplist of options.

Changing the properties of the highlighted entity

You can change the properties listed by the Quad on a property-by-property basis. See Chapter
13 for more on using and customizing rollover tooltips. I don’t find rollover tooltips useful, and so
tend to keep RT turned off.

Step 2: Expand the Quad
As you move the arrow cursor into the lonely last-command-used button, the Quad expands to show
additional buttons. Usually, these are the commands that are commonly used with the highlighted
entity. Click a button to execute its command.

Quad expanding when the cursor passes over it

Step 3: Move Into Groupings
Below the first row of commands is a row of blue boxes. These are headings, and they hold groups
of related commands. When you move the arrow cursor down into a blue box,such as Modify, more
commands appear, in this case related to modifying entities. Some groups of commands are for
operations common to any entity, while others might be specific to the entity that is highlighted.

Quad expanding further when the cursor across the blue headings

The commands you see in the Quad vary according to the workspace. See Chapter 14 on workspaces.

 12 Customizing the Quad 225

Identifying Icons. To see the meaning of an icon, pause the cursor over a button, and then read
the description in the tooltip.

Viewing the meaning of a button

TUTORIAL: DRAWING WITH QUAD

The Quad can start up drawing commands, as well as editing ones. The process, however, is dif-
ferent from using the Quad for editing, because there is no existing entity over which to hover! To
draw with the Quad, follow these steps:

1.	 Turn	on	the	Show Quad on Right-click	option	by	right-clicking	QUAD	on	the	status	bar,	and	then	selecting	the	

option.

Turning on Quad’s ability to draw entities

2.	 Right-click	in	the	drawing	area.	Notice	that	the	Quad	appears	with	drawing	commands.

Quad displaying drawing commands

3.		 Select	one,	and	then	begin	drawing	the	entity.

Tutorial: Dimensioning with Quad
The Quad is especially handy for dimensioning entities quickly. The speed is due to two presets: di-
mensioning commands use the Entity option by default, and the Quad knows which entity is selected.

To dimension an entity, follow these steps:

1.	 Pause	the	cursor	over	the	entity.

226 Customizing BricsCAD V19

2.	 Move	the	cursor	into	the	Quad’s	Draw	section.

Selecting a dimensioning command from the Quad

3.	 Click	a	dimensioning	command.	Notice	that	it	was	dimensioned	without	you	having	to	select	the	entity.

Entity is dimensioned

The same thing happens when dimensioning a line with two extension lines: all it takes is a single
click.

MODIFYING THE QUAD’S BEHAVIOR

To make the Quad work differently from its default settings, take a look at the Quad section of the
Settings dialog box. The fastest way to get there is to right-click QUAD on the status bar, and then
choose Settings in the shortcut menu.

In the Settings dialog box, you can change the following things:

 Ð Display the Quad only when an entity is selected (QuadDisplay variable = 2)

 Ð Have the Quad pop up at a different location (QuadPopUpCorner)

 Ð Make the Quad icons larger or smaller, tighter or wider (QuadIconSize and QuadIconSpace)

 Ð Control the appearance of rollover properties (RolloverTips and RollOverOpacity)

See boxed text for the full list.

 12 Customizing the Quad 227

Customizing the Quad

The Quad has been under a great deal of development from when it was first introduced. It seems to
get new functions with every release. For instance, the Quad Reactors section was added to BricsCAD
V17. But in terms of customization, V17 removed the Quad tab from the Customize dialog box, and
moved its content to the Workspace tab, under Quad Groups. But with V18 the Quad tab returned!

Until V18, all parts of the Quad were hard-coded, meaning we could not change them. Despite its
presence in the Customize dialog box, the only customization available was whether (or not) to
display predefined groups. With V18, full customization is available:

 Ð You can add and remove buttons from groups

 Ð Create and destroy groups

 Ð You cannot, however, edit the properties of existing buttons, such as the Title or Command fields

To customize the Quad, enter the Customize command and then choose the Quad tab. Alternatively,
right-click the Quad itself (or right-click QUAD on the status bar), and then choose Customize
Quad Items.

Accessing the Customize dialog box from the Quad

When you do, the Customize dialog box appears at the Quad tab. Notice that the Quad Button
properties are grayed out, indicating that they cannot be edited by you.

Quad tab showing uneditable properties for buttons

228 Customizing BricsCAD V19

Tutorial: Customizing Quad Buttons
To add buttons to the Quad, follow these steps:

1.	 Right-click	the	name	of	a	button,	and	then	choose	Insert.

Right-clicking a Quad button

2.		 Notice	the	Add	Quad	Button	dialog	box.	Choose	a	command	(a.k.a.	“tool”)	from	the	list,	and	then	click	OK.

Dialog box for adding buttons to the Quad

3.	 Back	in	the	Customize	dialog	box,	the	added	tool	appears	above	the	one	you	selected.

4.	 Click	OK	to	exit	the	Customize	dialog	box,	and	then	check	the	Quad	to	make	sure	the	new	button	works.

Deleting Buttons. To remove buttons from the Quad, follow these steps:

1.	 Right-click	the	name	of	a	button,	and	then	choose	Delete.

Choosing a Quad button to remove

 12 Customizing the Quad 229

2.		 Notice	the	warning	dialog	box:

Agreeing to the question

	 Click	Yes	to	finalize	the	removal.

CUSTOMIZING QUAD TABS

A tab is a group of buttons. Think of tabs as toolbars or ribbon panels. Typically, similar commands
inhabit a tab, such as for editing or for constraints. The figure below shows tabs named Model,
Draw, and so on.

Tabs in the Quad

To edit tabs in the Quad, follow these steps:

1.	 In	the	Customize	dialog	box’s	Quad	tab,	right-click	the	name	of	a	tab.	Notice	the	options	available:	

Right-clicking a Quad button

	 The	options	have	the	following	meaning:	

 Ð Insert Quad Tab — adds a new tab, empty of commands

 Ð Insert Copy — makes a copy of the selected tab, and then prompts for a new name

 Ð Delete Quad Tab — removes the tab from the Quad

 Ð Append Quad Button — adds a button to the current tab; see the previous tutorial

Tutorial: Adding Tabs. To add a tab to the Quad, following these steps:

1.	 Right-click	a	tab	name,	and	then	choose	Insert Quad Tab	from	the	shortcut	menu.

2.		 Notice	the	Add	Quad	Tab	dialog	box.	Enter	a	label	and	a	title.	

Naming the new tab

230 Customizing BricsCAD V19

	 For	this	tutorial,	enter	the	following:

	 Label	 New Tab

	 Title	 Tab tutorial

3.	 Click	OK	to	dismiss	the	dialog	box.	Back	in	the	Customize	dialog	box,	notice	that	the	new	tab	name	is	added	

above	the	one	you	selected.

New tab added to the list

	 In	the	Quad	Tab	properties	pane,	the	Label	and	Title	fields	appear	with	the	names	you	gave	them.

4.	 The	tab	is	unpopulated,	so	add	a	button	by	following	these	steps:	

a.	 Right-click	the	new	tab,	and	then	select	Append Quad Button.

Adding a button to the new tab

b.	 Notice	the	Add	Quad	Button	dialog	box.	For	this	tutorial,	choose	a	drawing	command,	such	as	Draw	>	

Ray.

Selecting a drawing command

c.	 Click	OK	to	close	the	dialog	box.	Back	in	the	Customize	dialog	box,	notice	that	the	new	tab	sports	the	

new	button.

 12 Customizing the Quad 231

At this point in the tutorial, we pause.

Where’s My New Tab?
You might think that the new tab will now appear in the Quad, like a new menu or a new ribbon
panel — but not so fast. Probably, it won’t. That’s because the appearance of a tab depends on how
the workspace is set up.

Is the tab part of a workspace? The appearance of tabs is controlled by the workspace, as described
next.

Tutorial: Turning On Quad Groups (Tabs)
The Workspace tab of the Customize dialog box specifies which Quad tabs are allowed to be dis-
played. (Quad tabs used to be called “groups.”) No tab is seen until its name is added to the Quad
Tabs section of a specific workspace. If you want the tab in every workspace, then you have to add
it over again to each one.

1.	 In	the	Customize	dialog	box,	click	the	Workspace	tab.

2.	 Open	the	Drafting	workspace	by	clicking	the	+	(node)	next	to	it.

Quad Tabs section of the Workspaces tab

3.	 Open	the	Quad Tabs	section.	Notice	that	the	new	tab	you	created	is	not	listed.	Similarly,	when	you	scroll	

through	the	Available	Tools	listing,	it	is	not	there,	either.

4.	 Right-click	Quad Tabs,	and	then	choose Append Quad Tab	from	the	shortcut	menu.

Getting ready to append a tab

232 Customizing BricsCAD V19

5.	 Notice	the	Select	Quad	Tab	dialog	box,	which	lists	the	names	of	tabs	you	can	add	to	the	workspace.	The	

tabs	are	listed	in	alphabetical	order	by	their	labels	(such	as	“Tab	tutorial”),	rather	than	by	their	titles	(such	as	

“New	Tab”),	because	labels	are	more	descriptive.

Selecting the tab to add

	 Select	“Tab	tutorial”	and	then	click	OK.

6.	 Notice	that	the	tab	is	added	to	the	workspace,	under	the	name	of	“New	Tab.”

“New Tab” added to the 2D Drafting workspace

7.	 Let’s	see	if	the	new	tab	appears	in	the	Quad.	Click	OK	to	close	the	Customize	dialog	box.

8.	 In	the	BricsCAD	drawing	area,	right-click	to	display	the	Quad	in	drawing	mode.		Move	the	cursor	to	display	

the	tabs,	and	then	the	content	of	the	“New	Tab”	tab.	

New Tab successfully added to the Quad

 12 Customizing the Quad 233

Toggling Quad Tabs
You have to add a tab to the Quad Tabs section to make it appear in the Quad. But you don’t need to
remove it to hide it. Instead, change the value of its Display parameter, as shown in the figure below:

Toggling the visibility of a Quad tab

When you remove a tab from the Quad Tabs section in the Workspace tab...

Deleting a Quad Tab from a workspace

...BricsCAD asks if you are sure:

Confirming the deletion

However, if you are removing the last reference of a Quad tab in all workspaces, then the situation
gets really serious:

Are you r-e-a-l-ly sure?

For some reason, BricsCAD erases the tab (group) definition from the Quad tab, as well as from
the workspace. This seems rather extreme to me, and I don’t know why BricsCAD is programmed
to do this.

A workaround is to create a dummy workspace, and store your custom Quad tabs in it.

234 Customizing BricsCAD V19

ABOUT QUAD ENTITY FILTERS

Entity filters are what BricsCAD uses to determine which commands to display. An entity filter is a
piece of programming code that reacts to (filters) the entity found under the cursor. For example,
when the selected object is text, then the Quad shows commands specific to text — in addition to
the All Entities section.

(Entity filters were named “Quad Reactors” in BricsCAD V17, and prior to V17 were known as
“Custom.” In those releases, reactors could only be toggled on or off. Even today, in one shortcut
menu they are called “Custom Alias,” and in one dialog box, they are called “Entity Alias.”)

You can customise filters for Quad commands (buttons) that you create. Quad items that are built
by Bricsys cannot be changed, and so are shown in gray, as illustrated below.

Filters cannot be edited for pre-made Quad buttons

Tutorial: Changing Entity Filters
To specify the entities that your custom Quad button should recognize, follow these steps:

1.	 In	the	Quad	tab	of	the	Customize	dialog	box,	select	a	command	in	your	custom	Quad	Tab.	For	this	tutorial,	

the	Quad	Tab	is	named	“Tab	tutorial.”

Select a Quad Button item

2.	 Look	down	to	the	Quad	Button	pane.	Notice	that	you	cannot	change	any	property,	except	Entity Filter.	(The	

other	properties	are	grayed	out.)

 12 Customizing the Quad 235

3.		 Select	Entity Filter,	and	then	click	the	Browse	button	(found	at	the	right	end	of	the	field).

4.	 Notice	the	Edit	Quad	Button	Filter	dialog	box,	and	that	it	lists	the	generic	“No_Selection”	filter.	

Current state of custom filter

5.	 You	can	add	a	generic	filter,	and/or	add	specific	entities	to	be	filtered.

a.	 To	add	a	generic	filter,	click	the	Add Filter	button.

b.	 Notice	that	the	new	dialog	box	also	sports	the	title,	Add	Quad	Button	Filter.

Choice of filters

	 The	content	of	this	dialog	box	is	not	documented,	and	so	I	am	only	guessing	at	what	the	options	mean:

Available Filter Meaning

Ojects_Any For common editing commands, such as Move and Erase;
 (this filter was formerly named ALL_ENTITIES)
Object_Any For entity-specific editing commands, such as PLine and AttEdit
No_Selection For drawing commands, where no entity is selected initially;
 (this filter was formerly named NO_SELECTION)

	 You	can	also	type	in	the	name	of	your	own	“custom	filter,”	which	I	think	is	meant	for	third-party	developers.

c.	 Click	OK	to	close	the	dialog	box.	Notice	that	your	selection	is	added	to	the	list.

Filter added to the list

236 Customizing BricsCAD V19

d.	 Now	click	the Add Entity Type(s)	button.	Notice	the	Add	Entity	Alias	dialog	box.

Choosing an entity

e.	 	Choose	one	or	more	entities	to	which	your	Quad	button	should	react,	such	as	Arc.

f.		 Click	OK.	Notice	that	again	the	item	is	added	to	the	filter	list.

Arcs added to the filter list

g.	 To	remove	a	filter	from	the	list,	select	it	and	then	click	the	Remove	button.	Remove	the	No_Selection	

and	Object_Any	filters,	leaving	on	the	Object_Arc	filter.

6.	 Click	OK	to	close	the	Edit	Quad	Button	Filter	dialog	box,	and	then	click	OK	to	close	the	Customize	dialog	box.	

7.	 Test	the	change	you	make	to	the	button’s	property	by	drawing	a	line	and	an	arc.	Your	custom	Quad	tab	ap-

pears	when	you	pause	the	cursor	over	the	arc,	but	not	over	the	line.	

Left: New Tab tab appearing for an arc; right: ...but not for the line

 12 Customizing the Quad 237

How the Quad Works. Or,	How	Does	It	Know	What	Entity	Is	There?
Pieter Clarysse of Bricsys explains: “The cursor makes use of C++ reactors to determine which enti-
ties are nearby. The icons that appear are appropriate to the entity.

“For example, if the cursor is near an intersection, it will display the Chamfer and Fillet commands.
When the cursor is over a gap between two entities, it will have the Trim and Extend commands;
the size of the gap (aperture) it recognizes can be adjusted in the Settings dialog box.”

To select the entity that is under the cursor in macros, use the ^S metacharacter, which is unique
to BricsCAD. It is unique, because ^S selects the entity without you needing to pick it. This allows
for actions like dimensioning entities with a single pick: the pick consists of selecting the dimen-
sioning command from the Quad.

238 Customizing BricsCAD V19

Notes

Customizing Rollover
Properties

CHAPTER SUMMARY

This chapter covers the following topics:

• Understanding how rollover tooltips work with the Quad

• Customizing the information displayed by rollover tooltips

All entities in CAD drawings carry properties, such as color and linetype. BricsCAD provides
several ways to view the values of properties:

DbList	command	lists	in	the	Text	window	the	names	and	properties	of	all	entities	in	the	drawing		

List	command	lists	in	the	Text	window	the	names	and	properties	of	selected	entities		

Properties	panel	displays	and	changes	properties	interactively

Rollover Tooltips	(a.k.a.	“quick	properties”)	displays	properties	in	the	quad

In this chapter, we concern ourselves with customizing rollover properties through the Customize
dialog box.

CHAPTER 13

240 Customizing BricsCAD V19

QUICK SUMMARY OF ROLLOVER PROPERTY SETTINGS

To turn on Rollover Tooltips, click the RT button on the status bar. There are no commands for rollover tooltips.

The variables that control the operation and look of rollover tooltips are available through the Settings dialog box:

The RolloverTooltips variable determines when the properties appear:

RolloverTooltips Properties are . . .

0 Properties not displayed by the Quad
1 Properties displayed while the cursor hovers over an entity
2 Properties displayed when the cursor enter the Quad’s title bar

The RolloverOpacity variable determines the seethru-ness of the tooltip:

RolloverOpacity Tooltip is . . .

100 Opaque (default)
10 Translucent (minimum value)

The RolloverSelectionSet variable determines the types of properties displayed::

RolloverSelectionSet Properties displayed . . .

0 None
1 Only General properties (default)
2 All properties shared by the selected entities *

*) Bricsys notes that large selection sets may cause slow reaction

Rollover properties are handy for seeing the properties of a single entity over which the cursor is
hovering (rolling over). Rollover properties are rolled into the Quad: when you hover the cursor
over an entity, a brief list of its properties are displayed for you. Two examples are shown below.

Left: Properties of a linear dimension; right: ...and a polyline

While the DbList, List, and Properties can display properties of more than one entity, rollover
properties are limited to a single entity. Despite the single-entity limitation, rollover properties
are handy, because we can change the properties that are displayed. Y

 13 Customizing Rollover Properties 241

You can have the rollover display as many properties as you want; the limit is the height of your
computer’s screen.

Extreme example of a rollover displaying many properties of a circle

The properties displayed by the rollover tooltip can be edited. (Those shown in gray cannot; they
are read-only.)

Changing the transparency of a circle

The display of rollover properties are turned on and off in these ways:

•	 Click	the	RT	button	on	the	status	bar

•	 Change	the	value	of	the	RolloverTooltips	variable

There is no command that toggles rollovers. The QuadIconSize variable has no effect on the size of
rollover properties. The properties content of the rollovers’ are customized with the Customize
command.

242 Customizing BricsCAD V19

QUICK SUMMARY OF ROLLOVER PROPERTIES

The properties displayed by rollover tooltips are
changed through the Customize dialog box’s Proper-
ties tab.

Shown at right are the entities and sub-entities available
in BricsCAD.

The properties of one entity, the path array, are shown
entity is to the far right.

A green checkmark indicates the property is displayed
by rollover tooltips.

There are a couple of things to be aware of:

• Some entities are “hidden” inside others. For example,
multiline leaders are found inside the Leaders section, and
mtext is found in the Text section.

• Parts of 3D entities, like edges and faces, have their
own categories at the end of the list.

 13 Customizing Rollover Properties 243

Customizing Rollover Properties

You use the Customize dialog box to change the properties displayed by rollover tooltips. The cus-
tomization is done on an entity-by-entity basis, and so you need to take two steps:

Step 1.	Select	the	entity	for	which	you	want	to	change	the	properties	displayed;	and	then...

Step 2. Select	the	properties	you	want	displayed	for	the	entity	by	the	tooltip	

By default, all entities have most properties are turned off due to the overwhelming number that
are available! How overwhelming? The next page lists all of the entities available in BricsCAD,
while adjacent to the list are all of the properties for just one of them, a polyline. Now, the number
of properties varies wildly between entity types, from a just few to many; dimension entities, for
instance, have nearly 100 properties each.

TUTORIAL: HOW TO CHANGE PROPERTIES DISPLAYED BY
ROLLOVERS

To customize the properties listed by the rollover tooltip, follow these steps. For this tutorial, you
will change the properties of helixes. The default properties for the helix entity are shown below:
color, layer, base radius, top radius, and height.

Default set of properties displayed for a helix

In this tutorial, you turn off the Color property, and turn on the Total Length property.

1.	 Enter	the	Customize	command	to	open	the	Customize	dialog	box.	

2.		 Choose	the	Properties	tab.	Notice	that	there	are	two	panes:

 Ð Entities pane (at left) lists the names of the entities found in BricsCAD

 Ð Properties pane (to the right) lists the properties that apply to the selected entity

When no entity is selected, the properties pane displays only the General properties, those that
are common to all entities.

TIP	 The	Entity	“entity”	has	a	special	function.	When	you	turn	its	properties	on	or	off,	it	affects	all	entities.	
For	example,	choose	Entity,	and	then	click	Linetype	to	turn	it	on.	The	Linetype	property	is	now	turned	on	
for	all	entities	in	BricsCAD.	This	trick	is	handy	when	you	want	all	entities	to	display	the	same	set	of	general	
properties.	

3.	 In	the	entities	pane,	select	Helix.	Next	door	in	the	properties	pane,	notice	that	certain	properties	that	are	

turned	on	by	default	for	helixes.	

Properties for the helix

4.	 In	the	General	section	of	the	properties	pane,	click	Color	to	turn	it	off	(so	that	no	check	mark	shows).

Turning off the Color property

5.	 In	the	Geometry	section,	click	Total Length	to	turn	it	on	(so	that	a	check	mark	shows).	

Turning on the Total Length property

6.	 Click	OK	to	exit	the	dialog	box.

7.	 Test	your	customization!	

a.	 Draw	a	helix.

b.	 Pause		the	cursor	over	it.	

	 Notice	that	the	Quad	no	longer	reports	the	color,	but	now	shows	the	total	length	of	the	helix	instead.	(If	the	

Quad	does	not	appear,	then	click	QUAD	on	the	toolbar,	or	else	press	F12	on	the	keyboard._

Properties for a helix, as customized by you

Notes

Customizing Multiple UIs
with Workspaces

CHAPTER SUMMARY

This chapter covers the following topics:

• Understanding how workspaces change the user interface

• Customizing workspaces

BricsCAD is a general CAD engine designed to work with many different disciplines. You
might use it for architectural modeling, for mechanical design, or for mapping — all of which employ
slightly different sets of commands. You might prefer to work with toolbars or with the ribbon; you
might want the drawing area shown by a gradient of colors or in a solid color.

Workspaces let you customize the user interface to your liking. BricsCAD comes with several work-
spaces already defined for general drafting, 2D mechanical design, 3D general modeling, and 3D
BIM modeling.

In this chapter, you learn how to customize workspaces to your liking.

CHAPTER 14

248 Customizing BricsCAD V19

QUICK SUMMARY OF WORKSPACE COMMANDS & VARIABLES

(new in V19) The names of workspaces changed with BricsCAD V19:

Old Name New Workspace Name Default Display

2D Drafting Drafting Displays ribbon
 . . . Drafting (Toolbars) Displays menu bar and toolbars, no ribbon
3D Modeling Modeling Displays menu bar and toolbars, no ribbon
BIM BIM Has a new ribbon style for V19; see below
Mechanical Mechanical Displays ribbon
Sheet Metal . . . Removed from V19

You can switch between workspaces with the status bar and a toolbar:

On the status bar, right-click the name of a workspace, and then choose another one

In the Workspaces toolbar, click the droplist and then choose the name of a workspace

There is no way to change the workspace from the ribbon or the menu bar. The U (undo) command does not reverse
workspace changes.

COMMANDS

The following commands work with workspaces:

Workspace — saves, renames, deletes, and sets the current named workspace.

WsSave — the current user interface as a named workspace.

WsSettings — opens the Customize dialog box at the Workspaces tab (and not the Settings dialog box, oddly
enough)

VARIABLES

The following variables work with workspaces:

WsCurrent variable — specifies the name of the current workspace.

WsAutoSave variable — determines if changes to the user interface are save to the workspace.

 14 Customizing Multiple UIs with Workspaces 249

Workspace Customization Elements

Workspaces are created and modified in the Workspaces tab of the Customize dialog box. It lists
the user interface elements that can be displayed, and additional options determine if the elements
actually are displayed by the workspace. In this chapter, we learn how this works.

Elements of workspaces displayed by the Customize dialog box

ADDING AND REMOVING WORKSPACES

You can add and remove workspaces by right-clicking a workspace name in the Customize dialog
box, and then choosing an option from a shortcut menu.

Removing Workspaces
To remove a workspace, follow these steps:

1.	 Right-click	the	workspace	name	and	then	choose	Delete.	

Removing a workspace

2.	 BricsCAD	displays	the	“Are	You	Sure?”	dialog	box:

Getting a second chace

	 Answer	Yes	or	No.

250 Customizing BricsCAD V19

QUICK SUMMARY OF WORKSPACE DEFAULT SETTINGS

Workspaces have the following default settings:

Workspace Purpose Turned On Turned Off

Drafting 2D general drafting Command line
 Menu bar

 Ribbon
 Access toolbar All other toolbars
 Properties panel All other panels
 Quad tabs

Drafting (Toolbars) 2D general drafting Command line Ribbon
 Menu bar

 Toolbars
 Properties panel All other panels
 Quad tabs

Modelling 3D general modeling Command line Ribbon
 Menu bar

 Toolbars
 Properties panel
 Quad tabs

Mechanical 2D mechanical design Command line Menu bar
 Mechanical Browser panel Toolbars

 Properties panel
 Components panel
 Properties panel
 Ribbon
 Quad tabs

BIM 3D building information Ribbon Command line
 modeling Properties panel Menu bar

 Many BIM panels Tool bars
 Quad tabs

C-C-CHANGES

The Sheet Metal workspace was removed from V19, and the 2D Drafting workspaces renamed.

The Quad Reactors node was moved from Workspace tab to the Quad tab in BricsCAD V18, and renamed “Entity Filter.”

Quad Groups were renamed as “Quad Tabs” in V18.

BricsCAD V17 disabled the On Switch parameter; V17 also removed the default DWT template file property through
the Metric Template and Imperial Template fields.

The Sheet Metal workspace was removed from V15, and then returned with V16.

 14 Customizing Multiple UIs with Workspaces 251

(new in v19) You can recover the removed element with the Manage Your Customizations button,
as described in Chapter 9.

Adding Workspaces
To add a workspace, follow these steps:

1.	 Right-click	the	name	an	existing	workspace	name,	and	then	choose	Insert Workspace.	

Starting to insert a new workspace

2.	 BricsCAD	displays	the	Add	Workspace	dialog	box	for	you	to	give	it	a	name.	If	you	click	OK	without	entering	a	

name,	the	workspace	is	not	created.

Naming the new workspace

Notice that it is inserted above the workspace that you selected. The new workspace contains the
following elements:

 Ð All menus

 Ð The set of toolbars shown below

 Ð The panels shown below, all set to “Don’t Change”

 Ð No ribbon elements

 Ð No Quad items

Default elements of a new workspace

252 Customizing BricsCAD V19

About Insert Separator
The Insert Separator option adds a line as a row of dashes. It is visible only in the Customize dialog
box; the line does not appear in the Workspace toolbar or on the status bar.

Separator added to the Workspaces tab

You use the separator as a guide to visually separate groups of workspaces.

TOGGLING THE DISPLAY OF UI ELEMENTS

The Workspaces tab’s primary purpose is to toggle the display of user interface elements on and
off independently in each workspace. You turn elements on and off by these methods:

Method 1.	Include	the	UI	element	in	the	workspace

Method 2.	Toggle	the	Display	parameter	to	On	or	Off;	not	all	elements	offer	this	parameter

In the following section, we look at both methods.

Workspace Property Toggles
When you choose the name of a workspace, the Customize dialog box displays its properties. You
can think of these properties as master toggles.

Default properties of a new workspace displayed by the Customize dialog box

Workspace properties have the following meaning:

 14 Customizing Multiple UIs with Workspaces 253

Workspace Property Meaning

Name Name of the workspace displayed in the workspace list in the status bar and by
 the Workspace toolbar (reported by the WsCurrent variable)

Display Determines if the workspace name is displayed by the status bar and toolbar
 droplists:
 • Yes
 • No
 (Note: When this property is turned off, the name of the workspace is still recognized
 by the Workspace command .)

Description Help-like description displayed in the status bar

ID Identifies the element in the CUI file, which stores all of these customizations;
 the “ws” prefix marks this element as a workspace

Menu Bar Toggles the display state of the menu bar (also toggled by the MenuBar variable):
 • On shows the menu bar when entering this workspace
 • Off hides the menu bar when entering this workspace
 • Don’t Change the display state when entering this workspace

Scrollbars Toggles the display of scroll bars (also toggled by the ScrollBars variable):
 • On shows the scroll bar when entering the workspace
 • Off hides the scroll bar
 • Don’t Change the display state when entering this workspace

Default Toggles whether this workspace is the default one when BricsCAD starts:
 • Yes shows this workspace when BricsCAD starts
 • No does not show this workspace

Stack Type (new in v19) Determines how panels are displayed (reported by the read-only
 StackPanelType variable);
 • Fixed resizeable panelset prevents the panel from collapsing (0)
 • Collapsable panelset allows the panel to collapse into a set (1)
 • Flyout panelset places the panel in a flyout; see figure below (2)

Left: Small panel icons; right: extra-large panel icons

Panel Button Size (new in v19) specifies the initial size of buttons on panels (reported by the read-only
 PanelButtonSize variable); see figure above.
 • Small displays 16x16 icons (0)
 • Large displays 24x24 icons (1)
 • Very Large displays 32x32 icons (2)

254 Customizing BricsCAD V19

Tool Button Size (new in v19) specifies the initial size of buttons on toolbars (reported by the read-only
 ToolButtonSize variable):
 • Small displays 16x16 icons (0)
 • Large displays 24x24 icons (1)
 • Very Large displays 32x32 icons (2)

Toolbar Margin (new in v19) Specifies the margin above and below each toolbar; measured in pixels
 (reported by the read-only ToolbarMargin variable)

Tool Padding (new in v19) Specifies the margin between icons on each toolbar; measured in pixels
 (reported by the read-only ToolIconPadding variable)

Above: Toolbar with normal spacing
Below: Toolbar with padding = 5 and margin = 5

TIP	 Use	the	Toolbar Margin	and	Tool Padding	values	to	increase	the	space	around	toolbar	buttons,	
which	can	make	them	easier	to	touch	with	a	finger	on	a	touchscreen	monitor.	For	this,	you	could	create	a	
workspace	named	“Drafting	(Touchscreen).”

Show Menus
Several shortcut menus in the Workspaces tab have an option called “Show,” such as Show Menu
and Show Toolbar.

Shortcut menu in Workspaces tab to access a specific menu or toolbar

These options have nothing to do with the visibility of menus, toolbars, or other UI elements; instead,
it switches (in this case) to the Menu tab of the Customization dialog box and to the specific menu
(“File,” in the figure above), so that you can customize the content of the File menu.

TOGGLING VISIBILITY OF UI ELEMENTS

The whole purpose of workspaces is to determine what UI elements are displayed, and how. When
these elements are listed in the Workspaces tab, then they will (probably) appear in the workspace
— unless the Display property is set to “No.” But there are some subtleties for each type of ele-
ments. Let’s go through them.

Toggling Menus
The Menus node determines which menu drop-downs are displayed, such as File and Edit. When
a menu name appears in this list, it is displayed by the workspace. Toggle the display of the menu
bar through the Properties pane of the workspace

 14 Customizing Multiple UIs with Workspaces 255

To make changes to a menu, use the Show Menu shortcut (as described above) to get to the Menu
tab; see Chapter 6.

Toggling Toolbars
The Toolbars node determines which toolbars are displayed by the workspace. When a toolbar
name appears in this list, it is displayed by the workspace. You can change the content of toolbars
with the Toolbars tab; see Chapter 7.

Toggling Panels
The Palettes node determines which panels (a.k.a. palettes or bars) are displayed through the use
of a three-way toggle:

Shortcut menu for palette items

	means	the	panel	will	be	displayed	when	switching	to	this	workspace

	means	the	panel	is	not	displayed

	means	the	panel	display	state	is	not	changed	(i.e.,	if	off	when	entering	the	workspace,	then	it	stays	off)

Toggling Ribbons
The Ribbon node determines which ribbon tabs are displayed by the workspace. When the name
of a ribbon’s tab appears in this list, then it is displayed by the workspace. You change the content
of tabs and panels through the Ribbon tab; see Chapter 9

Toggle the Quad
The Quad Tabs node determines which quad groups and commands are displayed. When a Quad
tab (a.k.a. Quad group) name appears in this list, it is displayed by the workspace, unless the Dis-
play property = No. You change the content of quad groups through the Quad tab; see Chapter 12.

The On Switch node was disabled with BricsCAD V17, and acts now only as a placeholder.

On Switch acts like the appendix in the human body

256 Customizing BricsCAD V19

TIP	 When	items	are	shown	in	gray	and	are	turned	off,	such	as	BIM Librarires	in	the	figure	below,	it	means	
that	an	extra	license	needs	to	be	purchased,	or	that	the	panel	has	not	yet	been	implemented,	such	as	
Visual	Styles.	

	 	 	

FINE-TUNING UI ELEMENTS

Earlier you saw the properties that are available for workspaces. Some user interface elements
have additional properties that you can adjust, specifically menu items, toolbars, palettes, ribbon
tabs, and Quad tabs.

Workspace Properties for Menus
When you choose the name of a menu, such as “File” ...

File menu selected in Workspaces tab

...then BricsCAD plays these properties:

Properties of a dropdown menu

Here is the meaning of the properties:

 14 Customizing Multiple UIs with Workspaces 257

Property Meaning

Menu Group Name of the menu group

ID Identifies the element in the CUIX file; “mn” prefix marks this element as a menu.

Display Determines if the menu is displayed by the menu bar:
 • Yes
 • No

Title Name of the menu displayed on the menu bar; the & indicates the underlined letter
 for Alt-key shortcut access . To access menus with a keyboard, hold down the Alt key:
 notice the underlined characters on the menu bar, and then press the underlined
 letter to access the menu, such as f for File menu, as illustrated below .

Diesel Executes Diesel code when the user selects the men

Properties of Toolbars
When you choose the name of a toolbar, such as “Standard,” BricsCAD displays these properties:

Properties of a toolbar

Property Meaning

Menu Group Name of the menu group

ID Identifies the element in the CUIX file; “tb” prefix marks this element as a toolbar
Display Determines if the toolbar is displayed when the workspace is opened:
 • Yes
 • No

Position Determines the toolbar’s initial location:
 • Floating — toolbar is located using the X and Y properties
 • Top — toolbar is attached to the top of the drawing area
 • Left— toolbar is attached at the left of the drawing area
 • Bottom— toolbar is attached to the bottom of the drawing area
 • Right— toolbar is attached at the right of the drawing area

Row Specifies the number of toolbar rows

Column Specifies the number of toolbar columns

X Locates the top of floating toolbars; the horizontal measurement is in pixels from
 the top of the computer screen. Floating toolbars can float outside of the BricsCAD window

Y Locates left edge of toolbar, measured in pixels fromthe left edge of the computer’s screen

Title Name of the toolbar displayed on the title bar of floating toolbars

258 Customizing BricsCAD V19

Properties of Panels
When you choose the name of a panel such as “Command Line,” BricsCAD plays the properties listed
below. The same properties are available to every panel. Palettes and bars are renamed “panels,” but
the words ‘palette’ and ‘bar’ still appear sometimes in the BricsCAD program and documentation.

TIP	 When	panels	are	CDOCK’ed	(center	docked),	they	overlap.	Because	the	topmost	panel	hides	the	oth-
ers,	BricsCAD	automatically	display	tabs	so	that	the	user	can	switch	between	them.	
	

	 	 	 	
The	Stack Z Order	parameter	determines	the	order	in	which	the	tabs	appear.

Properties of a panel, the Materials Browser panel in this case

Property Meaning

ID Identifies the name of the element in the CUIX file; cannot be edited by users

Title Name of the panel displayed in the Customize dialog box; a changed title has no
 effect on the name displayed by the panel’s title bar .

Changing the panel Title from “Command Line” to “My Command Input Area”

Display Determines if the panel is displayed by the workspace:
 • Show — shows the panel when users switches to workspace
 • Hide — does not show the panel when users switches to workspace
 • Don’t Change — show if visible in previous workspace; keep hidden, if not

State Determines default location of the panel when user switches to this workspace:
 • Floating — floats anywhere at coordinates defined by Float parameters
 • Dock Top — docks to top of drawing area as defined by Dock parameters
 • Dock Left — docks to left of drawing area
 • Dock Bottom — docks to bottom of drawing area
 • Dock Right — docks to right of drawing area
 • Don’t Change — show if visible in previous workspace; keep hidden, if not

 14 Customizing Multiple UIs with Workspaces 259

Stack ID Locates the panel when stacked:
 • LDOCK — docked to the left of the stack
 • RDOCK — docked to the right of the stack
 • TDOCK — docked at the top of the stack
 • BDOCK — docked at the bottom of the stack
 • CDOCK — docked on center of the stack, overlapping other panels

Stack Z Order Determines which panel is on top of other panels when center stacked (CDOCK):
 • 0 — Highest priority (panel appears on top of other, higher-numbered panels)

Dock Column Position of the panel (relative to other panels) when docked to the left or right

Dock Row Position of the panel (relative to other panels) when docked to the top of bottom

Dock Width Width of the panel when docked at left or right; measured in pixels .

Dock Height Height of the panel when docked at top or bottom; measured in pixels

Float Left Left edge’s starting location of a floating panel; 0 = left edge of the main monitor

Float Top Top edge’s starting location of a floating panel; 0 = top edge of the main monitor
Float Width Width of the panel when floating; measured in pixels

Float Height Height of the floating panel; measured in pixels

Transparency (new in v19) Determines the level of translucency of the panel:
 • 0 Fully opaque (default)
 • 90 Maximum translucency (nearly transparent)

TIPS	 When	you	assign	the	same	Stack Z Order	number	to	two	or	more	panels,	BricsCAD	changes	one	of	
the	duplicated	numbers	automatically.	For	instance,	assign	Stack	Z	Order	=	2	to	Layers	and	Rendering,	and	
one	of	them	will	be	changed	to	3.		
	
The Float Left	and	Top	parameters	apply	to	the	position	of	the	panels	when	using	a	multi-monitor	setup.	

When you move a panel to the left edge of the drawing area, BricsCAD previews the five possible
dock locations, as illustrated below: left, right, top, bottom, or center.

Panel preview

260 Customizing BricsCAD V19

Proprieties of Ribbon Tabs
When you choose the name of a ribbon tab, such as “Home, ” BricsCAD displays these properties
for the tab:

Properties of a ribbon tab

Property Meaning

Menu Group Name of the menu group .

ID Identifies element in the CUIX file; “rt” prefix marks this element as a ribbon tab

Label Identifies the element in the Customize dialog box

Title Names the tab as displayed on the ribbon

Key Tip Specifies letter to use for Alt-key shortcut access; not implemented .

TIP	 If	key	tips	were	implemented,	it	would	work	like	this:	hold	down	the	Alt	key;	notice	the	charac-
ters	in	the	tooltips,	then	press	the	letter	on	the	keyboard	to	access	the	tab,	such	as	h	for	Home	tab.

Quad Reactors were removed from BricsCAD V18, as were the properties of Quad Tabs (Groups)
from the Customize dialog box.

Properties of Quad Items
The only aspect of Quad items that can be customized is whether they appear in the current work-
space. When you choose the name of a Quad item (under a Quad Tab name), BricsCAD displays
these properties:

Properties of a Quad item

Property Meaning

Title Name of the group displayed by the Quad; read-only

Label Name of the Quad tab; read-only

Title Named displayed by the Quad tab; read-only

Display Determines if the tab is displayed by the quad in this workspace:
 • Yes
 • No

The job of creating Quad groups was moved from this tab to the new Quad tab in BricsCAD V18;
see Chapter 12.

Other Customizations
in BricsCAD

PART III

262 Customizing BricsCAD V19

Notes

 15 Designing Tool & Structure Panels 263

Designing Tool &
Structure Panels

CHAPTER SUMMARY

This chapter covers the following topics:

• Customizing icons and commands in Tool Palettes panel

• Importing palette files from AutoCAD

• Organizing palettes through groups

• Customizing the content of Structure panels

The purpose of the Tool Palettes panel is to provide access to collections of commands you
use often, as well as to drawing elements, such as hatch patterns. Instead of rummaging through a
variety of commands, you drag commonly-used items from this centralized palette into the drawing.

The Structure panel shows you the structure of the drawing: which entities are connected to which.
The way in which it displays data can be customized by you.

In this chapter, you learn how to customize the Tools and Structure panels.

CHAPTER 15

264 Customizing BricsCAD V19

PANEL COMMANDS AND VARIABLES

The following commands affect panels (commands new to BricsCAD V19 shown in blue):

AttachmentsPanelOpen and AttachmentsPanelClose — opens and closes the Attachments panel for managing
Xref, Raster Image, PDF, and Pointcloud attachments.

ComponentsPanelOpen and ComponentsPanelClose — opens and closes the Components panel for accessing
symbols (blocks)

ContentBrowserCose and ContentBrowserOpen— closes and opens the Content Browser panel

CommandLine and CommandLineHide — displays and closes the command line panel

LayersPanelClose and LayersPanelOpen — closes and opens the Layers panel

MatBrowserClose and MatBrowserOpen — closes and opens the materials browser panel, which shows an overview
of available high-resolution render materials

MechanicalBrowserClose and MechanicalBrowserOpen — closes and opens the Mechanical Browser panel

ParametersPanelOpen and ParametersPanelClose — opens and closes the Parameters panel

Properties and PropertiesClose — displays and closes the Properties panel with properties of selected entities

ReportPanelClose and ReportPanelOpen — closes and opens the Report panel

SheetSet and SheetSetHide — opens and closes the Sheet Sets panel

StandardPartsPanelClose and StandardPartsPanelOpen — closes and opens the Standard Parts panel for insert
ing a standard hardware part as a mechanical component in the current drawing

StructurePanel and StructurePanelClose — open and close the Structure panel displaying tree structure of the
drawing content

ToolPalettes and ToolPalettesClose — opens and closes the Tool Palettes panel

-ToolPanel — shows, hides, and toggles the visibility of specified panels through the command line

TpNavigate — loads tool palettes and groups through the command line

Variables that affect the tool palettes panel:

ToolPalettePath — specifies the path to the folder holding .xtp files

TpState — reports whether the tool palettes panel is open (read-only)

 15 Designing Tool & Structure Panels 265

About the Tool Palettes Panel

A most useful tool to CAD operators and managers is that the Tools Palettes panel. It shows the
same group of palettes in every drawing that is opened. Indeed, BricsCAD has the ability to provide
one set standardized of Tool Palettes for an entire office.

The Tool Palette panel is displayed by pressing Ctrl+3 (Cmd+3 on the Mac) or by entering the
ToolPalettes command. To show you what the Tool Palettes panel looks like, the four default ones
are illustrated below. From left to right, we have one filled with 3D form features, another with
commands, the next with hatch and fill patterns, and the last with familiar drawing commands.

Left to right: Palettes provided by default in BricsCAD

Briefly, here is how you work with the icons shown by each palette:

 Ð Form Features tab — drag a feature onto a sheet metal part

 Ð Command Tools tab — click an icon to run the associated command, such as the Line command

 Ð Hatches tab — drag one of the hatch or fill pattern icons into a closed object in the drawing

 Ð Draw tab — click an icon to execute the command, such as Line, Circle, or Spline

 Ð

ToolPalettes does not, unfortunately, support blocks. Instead, use the Components panel with the
ComponentsPanelOpen command.

(Form features are sheet metal features that mimic applying a forming tool to the sheet metal, such
as bridges, louver, and embosses. They inserted from built-in or user-defined libraries; BricsCAD
recognizes form features in imported geometry. Form features are listed in the Mechanical Browser
pane with their parameters; they can be edited directly or parametrically through Properties panel.
Each feature is represented by a .dwg file in the C:\Users\userid\AppData\Roaming\Bricsys\Bric-
sCAD\V19x64\en_US\Support\DesignLibrary\SheetMetal\FormFeatures folder.)

The user interface of the Tool Palettes panel is subtle, with numerous options “hidden” in shortcut
menus all over the palette. So, a large part of this chapter exposes these shortcut menus to you.

TIP	 You	can	use	the	right-click	menu	to	add	components	from	files	listed	in	the	Folders	tab	of	the	
BricsCAD	Drawing	Explorer	to	the	current	tool	palette.

266 Customizing BricsCAD V19

QUICK SUMMARY OF VIEW OPTIONS

The View Options dialog box controls the size and style of icons. To access the dialog box, right-click the current tab in
the Tool Palettes, and then choose View Options from the shortcut menu.

Adjusting the look of palette icons

Image Size — slider changes the size of the icons, from smaller to larger

View Style — switches between showing icons with labels (text), or showing icons only, or or text-only

Apply to — applies the changes to the current tab or to all tabs

The figures below shows the effects of the Image Size and View Style options. Here is the smallest icon size, with text labels:

Small icons with labels

And here you see large icons with no labels. Removing labels squeezes in more icons, but may make it harder to know
the purpose of them.

Large icons with no labels

 15 Designing Tool & Structure Panels 267

Navigating Tools Palettes

Different shortcut menus appear in the Tool Palettes panel, depending on which tab you right-click.
I recommend that first off you right-click the tab of the current palette, because it displays the larg-
est number of options, and so is the most useful:

Right-clicking the current (or top-most) tab

Clicking one of the other tabs gets you an abbreviated version. Here is the meaning of the options:

 View Options displays	a	dialog	box	for	setting	the	size	and	look	of	icons,	along	with	descriptions;	see	the	

figure	below	and	the	boxed	text	on	the	next	page	for	the	meaning	of	the	functions

View options for all palettes

 Paste	pastes	data	from	the	Clipboard	into	the	palette;	available	only	when	the	Clipboard	contains	data	ap-

propriate	to	the	Tool	Palette,	such	as	a	block	definition

 Update Palette updates	the	image	of	the	icons,	should	a	source	(like	a	block	definition)	have	changed

 New Palette creates	a	new	blank	tab,	and	then	prompts	you	to	name	it

 Delete Palette	warns	against	deleting	the	tab,	and	then	removes	it	after	you	answer	in	the	affirmative.

Deleting a tab

268 Customizing BricsCAD V19

 Rename Palette renames	the	selected	tab;	see	figure	below:

Renaming a tab

ICON CUSTOMIZATION

When you right-click a tool’s icon, BricsCAD shows the following shortcut menu. Depending on
which icon you right-click, the shortcut menu may show fewer options:

Shortcut menu for individual tools

 Cut	and	Copy	—	place	the	tool	on	the	Clipboard	(Cut	also	deletes	it	from	the	palette);	you	can	then	right-click	

the	palette	and	select	Paste

 Delete	—	removes	the	tool	after	you	affirm	the	questioning	dialog	box:

Affirming the deletion of a tool

 Rename	—	allows	you	to	rename	the	tool,	as	shown	below

Renaming a tool

 Update tool image — refreshes	the	icon	(applies	to	blocks	and	hatch	patterns	only)

 Specify Image	—	opens	the	Select	Image	File	dialog	box,	from	which	you	select	an	image	in	BMP	bitmap,	GIF,	

JPEG,	PNG,	or	TIF	format;	large	images	are	resized	automatically	to	fit	the	icon	area

 15 Designing Tool & Structure Panels 269

	 Remove Image	—	returns	the	icon	to	its	default,	removing	the	image	you	applied	with	the	Specify	Image	op-

tion;	I	suppose	a	better	name	for	this	option	could	be	“Reset	Image”

 Properties	—	displays	a	dialog	box	for	changing	the	item’s	properties	(see	figure	below);	the	content	of	the	

dialog	box	varies	according	to	the	type	of	tool	selected,	and	is	discussed	later	in	this	chapter

Changing the properties (and functions) of a tool

Shown above are the properties of hatch patterns. To edit a property, click on it in the dialog box,
and then make the change.

PALETTE CUSTOMIZATION

The first step in customizing the Tool Palettes panel is to right-click on an unused area of the panel
— not on an icon or a tab — to get the following shortcut menu:

Right-click menu for controlling palettes

	 View Options	—	displays	the	same	dialog	box	as	does	the	tab’s	shortcut	menu

	 Paste	—	pastes	a	tool,	if	one	has	been	copied	or	cut	to	the	Clipboard

 Update tool image — refreshes	the	icon	(applies	to	blocks	and	hatch	patterns	only)

 New Palette	—	adds	a	new	blank	palette

	 Delete Palette	—	removes	a	palette

	 Rename Palette	—	changes	the	name	on	the	tab

270 Customizing BricsCAD V19

	 Customize Palettes	—	displays	the	Customize	dialog	box	for	creating	palette	groups	(see	figure	below);	the	

dialog	box	is	described	later

Customize dialog box for creating palette groups

Add Tool	—	displays	the	Customize	dialog	box,	as	described	in	earlier	in	this	book

Customizing Tools

The Tool Properties dialog box lets you customize the actions of commands and hatch patterns.
For instance, you can specify that clicking an icon (that looks like a cloud) draws revisions clouds
that are red in color, and placed on a specific layer or with a certain linetype.

To access this very important dialog box, right-click the icon you want to customize, and then choose
Properties. There are three versions of the dialog box — one each for form features (components),
hatches, and commands, as illustrated below:

Left to right: Tool properties for form features, patterns, and all other commands

 15 Designing Tool & Structure Panels 271

Customizing Tools Properties
In this tutorial, you make a copy of an existing tool, and then customize it by changing its properties.
You modify the Line tool to draw lines with the “Hidden” linetype on layer “Hidden.”

Follow these steps to customize it:

1.	 Create	a	new	layer	named	“Hidden.”	Use	the	Layer	command	to	do	this	in	the	Drawing	Explorer	dialog	box.

Creating a new layer named “Hidden”

2.	 Load	the	“Hidden”	linetype	into	the	drawing.	Use	the	Linetype > Load option	for	this.

Drawing Explorer listing available linetypes

3.	 Close	the	Drawing	Explorer.

4.	 Open	the	Tool	Palettes	panel	with	the	ToolPalettes	command,	and	then	choose	the	Command Tools	tab.

5.	 Make	a	copy	of	the	Line	tool	by	copying	it	and	then	pasting	it,	like	this:	

a.	 Right-click	the	Line	tool,	and	then	choose	Copy	from	the	shortcut	menu.

Copying the Line tool

272 Customizing BricsCAD V19

b.	 Right-click	a	blank	area	of	the	palette,	and	then	choose	Paste.	

Pasting the tool as a new one

Notice	that	BricsCAD	creates	a	second	Line	tool.

The second Line tool in place

6.	 With	the	copy	made,	you	can	now	edit	its	properties.	Right-click	the	new	item,	and	then	choose	Properties.

Opening the properties of the new Line tool

 15 Designing Tool & Structure Panels 273

7.	 In	the	Properties	dialog	box,	change	the	following	properties	for	this	tutorial:

Properties Value

 Name Hidden Line
 Description Draws line with linetype Hidden on layer Hidden
 Linetype Hidden
 Layer Hidden

Changing the properties

8.	 Click	OK.	Notice	that	BricsCAD	changes	the	label	of	the	icon.

Renamed icon

9.	 If	you	want	to	change	the	icon	associated	with	the	button,	follow	these	steps:

a.	 Right-click	the	icon,	and	then	from	the	shortcut	menu,	choose	Specify	Image.

Starting to assign an image to the button

274 Customizing BricsCAD V19

b.	 In	the	Select	Image	Position	File	dialog	box,	select	an	image	file	(in	BMP,	JPEG,	PNG,	GIF,	or	TIFF	format),	

and	then	click	Open.	Notice	that	the	icon	changes.	BricsCAD	automatically	resizes	the	image	to	fit	the	

area	of	the	icon.

Icon changes to the newly selected image

10.	 To	test	the	tool	that	it	actually	works,	click	it	and	draw	some	line	segments.	If	you	do	not	see	the	hidden	

linetype,	change	the	value	of	the	linetype	scale	with	the	LtScale	command.	

Drawing line segments with hidden linetype automatically applied

	 After	drawing	the	lines,	click	them	to	see	that	they	are	being	drawn	on	the	Hidden	layer.

“Hidden” layer automatically set

Adding Programs and Macros to Tools
You can make tools carry out simple programs (known as “macros”), but the process is less direct
than with just commands. It takes a workaround shown by these steps:

1.	 Place	any	geometric	entity	(tool)	on	a	palette.	It	doesn’t	matter	what	the	entity	is,	because	it	is	used	only	as	a	

placeholder.

2.	 Right-click	the	newly-added	tool,	and	then	select	Properties.

3.	 In	the	Command String	area,	replace	the	command	with	a	piece	of	programming	code	or	a	macro.	

Editing the macro assigned to a button

TIP	 You	can	either	type	the	new	code,	or	copy’n	paste	it	from	another	source,	such	as	from	the	
earlier	chapters	of	this	book	that	deal	with	writing	macros.	

4.	 Click	OK	and	then	test	to	macro	to	make	sure	it	works.

 15 Designing Tool & Structure Panels 275

Organizing Tools with Groups

BricsCAD allows you to create many palettes, but too many palettes can become unwieldy, and
so BricsCAD allows you to create groups of palettes. Groups let you show only those palettes you
need currently.

To create groups, right-click a blank area of the Tool Palettes panel, and then choose Customize
Palettes from the shortcut menu.

Accessing that other Customize dialog box

Notice that the Customize dialog box appears, and that it is different from the Customize dialog box
displayed by the Customize command! (There is no independent command to display this dialog box.)

Dialog box for creating palette groups

The commands and options for this dialog box are accessed solely by right-click menus. For instance,
to create a new palette, right-click in the Palettes area and then select New Palette, as shown above.

Rename	—	renames	the	palette

New Palette —	creates	a	new	palette	named	“New	Palette,”	which	you	then	give	a	new	name

Delete	—	erases	the	palette	after	you	click	OK	to	this	dialog	box:

Import	—	imports	palette	files	in	XTP	and	BTC	formats;	opens	the	Import	Palette	dialog	box.

XTP is short for “XML Tool Palette,” the file format used by AutoCAD. BTC is short for “BrisCAD
Tool Collection.”

276 Customizing BricsCAD V19

CREATING PALETTE GROUPS

You can create as many palettes as you want; I am unsure if there is an upper theoretical limit. I
can see a design firm creating dozens of palettes, some for electrical engineers, some for landscape
designers, and so on. You can create grouping of palettes so that the electrical engineer doesn’t
have to see the palettes for landscaping. A group is a smaller set of palettes.

BricsCAD does not come with any palette groups, so you get to create your own through the oddly-
named Customize dialog box — oddly named, because this is not the dialog box of the same name
that is opened with the Customize command.

There is no command to access this dialog box; instead, you (as always) right-click a blank area of
a palette, and then choose Customize Palettes from the shortcut menu. Notice the other Custom-
ize dialog box:

Accessing that other Customize dialog box

(While this dialog box existed prior to V17, the groups function did not work.) As elsewhere with
Tool Palettes, all commands in this dialog box are executed through shortcut menu. When you
right-click the name of a group, the following menu appears:

 New Group —	creates	a	new	but	empty	palette	group

 Rename	—	renames	the	palette	group

 Delete	—	erases	the	group	with	no	warning

 Set Current —	sets	the	selected	group	as	the	current	one,	meaning	it	will	be	displayed	by	the	Tool	Pal-

ette	panel;	when	the	group	is	empty,	then	this	command	is	grayed	out

 Export	—	exports	the	current	group	to	a	XPG	file,	as	described	later

 Export All —exports	all	groups	in	a	single	XPG	file

 Import	—	imports	XTP	and	BTC	files,	as	described	later

 15 Designing Tool & Structure Panels 277

To create a group of palettes, follow these steps:

1.	 In	the	Customize	dialog	box,	right-click	Palette Groups,	and	then	from	the	shortcut	menu	choose	New Group.

2.		 Notice	that	BricsCAD	creates	a	new	group	name	named	“New	Group.”	For	this	tutorial,	change	then	name	to	

Drawing Lines.

3.	 Now	drag	palette	names	from	the	Palettes	list	over	into	the	newly	formed	group.	For	this	tutorial,	drag	over	

“Hatches.”

4.	 Right-click	the	group	“Drawing	Lines”	and	then	from	the	dialog	box	choose	Set Current.

5.	 When	done,	click	Close.		Notice	that	the	Tool	Palette	panel	now	shows	just	one	palette,	Hatches.

Tool palettes with a custom group that shows just one palette

278 Customizing BricsCAD V19

IMPORTING TOOL PALETTES FROM AUTOCAD

BricsCAD reads files saved the XTP format; this is the format in which AutoCAD saves tool palettes.
“XTP” is an XML-based file format; the name is short for “xml tool palette.” To import them into
BricsCAD, follow these steps:

1.		 In	this	Customize	dialog	box,	right	click	and	then	choose	Import	from	the	shortcut	menu.

Choosing the Import option

2.	 In	the	Import	Palette	dialog	box,	navigate	to	where	you	have	XTP	files.	

3.	 Choose	the	file,	and	then	click	Open.	Notice	that	BricsCAD	adds	the	palette	to	its	collection.

4.		 Click	Close	to	close	the	dialog	box.	Notice	the	new	tab	with	its	icons.	

Tools lacking icons

BricsCAD does not have access to the icons used for tools, because AutoCAD stores them internally.
This is why question-mark icons are displayed.

Sharing Tool Palette Groups by Exporting Them
Once you customize a tool palette, you might want to share it with others. To do so, you export
groups. Groups are exported in XTG files (short for “XML tool group”).

Now, individual palettes cannot be exported (I am not sure why!), but you can do the same thing
by putting a single palette into a group, and then exporting it.

Here is how to do this:

1.		 In	this	Customize	dialog	box,	right	click	a	group,	and	then	choose	Export	from	the	shortcut	menu.

2.	 In	the	Export	Palette	dialog	box,	navigate	to	where	you	stre	XTG	files.	

3.	 Name	the	file,	and	then	click	Save.	

 15 Designing Tool & Structure Panels 279

Alternative Sharing Method
Another way to share palettes is to edit the Settings dialog box in BricsCAD to point to where BTC
and XTP files are stored, such as for AutoCAD.

1.	 Enter	the	Settings	command.

2.	 In	the	search	field,	enter	“palette.”

3.	 Open	the	Tool	Palettes	section,	and	then	go	to	the	Tool	Palettes	Path	setting.	

4.	 Click	the	 	Browse button.

5.	 In	the	Folder	List	dialog	box,	click	the	 	Add Folder	button.	

6.	 Enter	the	path	to	the	folder	holding	the	XTP	or	BTC	files.	If	necessary,	click	the	Browse	button	and	then	use	

the	Choose	a	Folder	dialog	box	to	locate	the	folder.

7.		 Click	OK	sufficient	times	to	back	out	of	all	the	folders!

This dialog box can be used to point to other AutoCAD support folders, such as for hatch pattern
collections, linetype files, printer setups, and so on.

280 Customizing BricsCAD V19

Customizing the Structure Panel

The Structure panel displays a structured tree view of the drawing’s content. This includes the
names of entities, blocks, and nearly any other entity. You can customize the elements that are
listed and in which order.

When you select the name of an entity in the structure tree, the entity is highlighted in the drawing
— and vice versa. Notice that entities are identified by hexadecimal (base 16) numbers.

Structure panel showing the structure of a floor plan by entities

There are two commands to open the Structure panel:

 Ð StructurePanel opens the Structure panel; StucturePanelClose closes it. Alternatively, right-click a toolbar
or other UI element in BricsCAD, and then choose Structure from the shortcut menu.

 Ð +StructurePanel opens the Structure Tree Configuration File dialog box, prompting you to select a .cst (Con-
figure Structure Tree) file; when you click Open, the Structure panel is opened and displays the configuration
defined by the .cst file.

A limitation: The panel operates in model space only.

When the panel opens, right-click the name of the drawing to see the following shortcut menu:

Accessing options

Drawing Properties —	displays	the	Drawing	properties	dialog	box,	the	same	as	entering	the	DwgProps	command

Export	—	exports	the	drawing	as	an	XML	file

Expand	/	Collapse All	—	expands	and	collapses	all	nodes

Configure	—	displays	the	Configure	Structure	Tree	(more	later)

 15 Designing Tool & Structure Panels 281

Right-clicking any other item in the panel displays the following shortcut menu, with a few differ-
ent options:

Accessing another shortcut menu

Show	— (new in v19) show	the	entity	in	the	drawing

Hide 	—	(new in v19) hides	the	entity	from	the	drawing

Isolate 	—	(new in v19) hides	all	other	entities	in	the	drawing

Zoom	—	zooms	into	the	selected	entity(ies)

Structure Configurations
The data displayed by the panel can be customized. BricsCAD provides several pre-made configu-
rations suitable for various kinds of drawings. The C:\Users\<login>\AppData\Roaming\Bricsys\
BricsCAD\V19x64\en_US\Support folder holds these .cst files:
default.cst
bim.cst
mechanical.cst

To load another configuration, click the down arrow (upper-right corner of the panel), and then
choose one from the list or else navigate to another folder with the Select option.

Selecting a Structure panel configuration

Alternatively, enter the StructureTreeConfig variable, which prompts you at the command line
to specify the name of a .cst file:
: structuretreeconfig
New value for StructureTreeConfig, or . for none/< C:\Users\<login>\AppData\Roaming\Bricsys\Bric-
sCAD\V19x64\en_US\Support\default.cst>:

CUSTOMIZING THE STRUCTURE PANEL

The format of the panel is customized through the Configure Structure Tree dialog box. You can create
many configurations, depending on your needs. Customization of a configuration takes two steps:

Step 1 —	Create	a	rule

Step 2	—	Specify	the	properties	of	the	rule

282 Customizing BricsCAD V19

STRUCTURE OF .cst FILES

The C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\Support folder holds several .cst files. The bim.cst file
is shown below, organizing the building spatially, first by Building, then by Story, BIM type, and then composition. Sections
are grouped by type: Section, Plan, Elevation, and Detail.

{
 “created”: {
 “by”: “BricsCAD”,
 “on”: “2016-10-28 10:50:09”
 },
 “rules”: [
 {
 “name”: “Building Elements”,
 “group”: [
 “BIM/Building”,
 “BIM/Story”,
 “BIM/Type”,
 “BIM/Composition”
],
 “sort”: [
 “BIM/Name”
]
 },
 {
 “name”: “Sections”,
 “group”: [
 “BIM/Section Type”
],
 “sort”: [
 “Name”
]
 },
 {
 “name”: “Entities”,
 “group”: [
 “EntityType”
],
 “sort”: [
 “Name”,
 “EffectiveName”,
 “Handle”
]
 }
],
 “mode”: “showAll”,
 “some”: [],
 “options”: {
 “treeSelect”: “select”,
 “entitySelect”: true,
 “autoCollapse”: false,
 “displayMode”: “byType”
 }
}

 15 Designing Tool & Structure Panels 283

To customize the data displayed by the panel, click the bar (the one with the word “default” in the
figure below).

Opening the Configure Structure Tree dialog box

This handy shortcut opens the Configure Structure Tree dialog box.

Dialog box for customizing the display of the Structure panel

The dialog box sports three tabs — Group/Sort, Show/Skip, and Options. Let’s take a look at what
they offer.

Group/Sort Tab
The Group/Sort tab determines how drawing data is displayed. Here you can add rules and property
filters, move items around, and remove them.

To add a rule:

1.	 Select	an	existing	rule	name.

2.	 Click	the	green	+	(Add)	button.	Notice	that	the	rule	is	duplicated.	

3.		 Use	the	arrows	to	move	the	selected	rule	up	and	down	the	list.	

4.	 Edit	the	content	of	the	rule,	as	described	later.

To rename a rule:

1.	 Select	a	rule	name.

2.	 Click	on	the	name	a	second	time.

3.	 Give	the	rule	a	different	name,	and	then	press	Enter.

To remove a rule:

1.	 Select	a	rule	name.

2.	 Click	the	red	x	button;	there	is	no	warning.

284 Customizing BricsCAD V19

Examining Rules
The way that element information is displayed in the Structure panel is determined by rules. The
rules specify which entities are displayed, and the order in which their properties are listed. By
listing one property ahead of another one, the second property becomes a subset of the first. More
on this later.

Let’s take the example of the bim.cst configuration.

Left: Structure panel’s display controlled by; right: ...the bim.cst file

The names of the rules — such as Building Elements and Sections — are for use by humans only,
and describe the content of the rules. Think of them as sections. Click a gray > (angle bracket) to
open the section, displaying the elements of the rule.

Expanded rules

There are three elements in each rule:

Filter	—	determines	which	elements	are	displayed	by	the	rule;	in	this	rule,	it’s	the	names	of	BIM	Types.	

Group	—	determines	how	the	BIM	Types	are	grouped	together;	in	this	case,	BIM	Buildings,	Stories,	etc.	

Sort	—	specifies	how	the	elements	are	sorted	within	each	group;	here,	it’s	by	BIM	Name.

 15 Designing Tool & Structure Panels 285

Let’s look at another rule to assist with understanding how configurations work:

BIM rules for displaying sections

Here the Structure panel displays information about sections. The Sections rule arrives at this by
specifying the following:

Rule Property Meaning

Filter BIM Section type List details, elevation, plan, and section names
Group BIM Section type Group together BIM section types
Sort Name Sort section types by name alphabetically

You can see why I used the word “elements” instead of “entities.”

TIPS	 The	Diff Type	property	is	used	during	the	3dCompare	command;	it	reports	differences,	if	any,	be-
tween	the	two	drawings	being	compared.	
	
When	there	is	no	configuration	file	loaded,	the	Structure	panel	displays	drawing	entities	in	alphabetical	
order.	The	icon	in	front	of	each	name	identifies	the	entity	type,	such	as	polyline,	circle,	and	text:	

	 	 	

286 Customizing BricsCAD V19

Constructing Rules
To construct a rule, you select properties from a long list that I will show you shortly.

For this tutorial, I created a blank configuration file. I did this by deleting all rules from an existing
.cst file, and then used the File | Save As command to save it (with the name cb.cst).

Saving a blank .cst file

In this tutorial, we create a rule that causes the Structure panel to list only lines in the current
drawing, sorted by layer name, and then by length.

1.	 To	start	constructing	a	new	set	of	configuration	rules,	click	the	green	+	icon.	Notice	that	a	generic	rule	is	
added,	named	“Rule.”

A generic rule added

	 The	generic	rule	has	three	(fixed)	sections	that	define	the	rule:	Filter,	Group,	and	Sort.	You	cannot	add	or	

delete	these	three	sections.	If	the	section	is	empty,	then	it	does	nothing.

2.	 Rename	the	rule	as	“Lines	by	Layer,”	as	follows:

a.	 Right-click	“Rule,”	and	then	choose	Rename.

b.	 Change	“Rule”	to	Lines by Layer,	and	then	press	Enter.

 15 Designing Tool & Structure Panels 287

3.	 We	want	the	Structure	tree	to	display	only	lines,	so	right-click	Group,	and	then	choose	Add Filter Property.

	 Notice	the	Select	Property	dialog	box.	It	lists	every	property	available	in	BricsCAD	—	a	couple	hundred	of	them.	

Properties dialog box

The	properties	are	grouped	into	these	sections:

 Ð General — lists properties common to all entities; these should be known to you from the Properties panel

 Ð Entities — lists the names of all entities and their specific properties

 Ð Extensions — lists properties that are specific to add-ons to BricsCAD, such as the BIM module

4.	 For	this	tutorial,	we	want	lines	listed	by	layer	name.	Click	the	+	next	to	Entities,	and	then	work	your	way	

down:	Entities	>	Line	>	Line	>	General	> Layer:	

Properties

288 Customizing BricsCAD V19

5.	 Close	the	Properties	dialog	box	by	clicking	OK.	Notice	that	“Layer”	is	added	under	Group.	

Entities grouped by layer

6.	 Let’s	see	what	this	has	done	to	the	Stricture	panel.	Click	OK	to	close	the	dialog	box.	Notice	that	the	panel	lists	

the	“Lines	by	Layer”	rule.

New rule displayed in Structure panel

7.	 Now	let’s	see	what	is	listed	under	that	rule.	Click	the	>	next	to	“Lines	by	Layer.”

Layer names in the drawing

	 So	far	it	looks	good.	You	see	the	list	of	all	layer	names	in	the	drawing.	(I	don’t	know	the	order	in	which	they	

are	listed	—	perhaps	in	order	they	were	created?)	The	number	in	parentheses	next	to	each	layer	name	is	the	

number	of	entities	on	that	layer,	such	as	(36)	for	A-ELEV-OTLN.

8.	 Click	the	>	next	to	layer	“A-ELEV-OTLN.”	Oops!	What’s	this?	The	icon	shows	that	those	are	polylines	listed.	

Polylines listed by layer

 15 Designing Tool & Structure Panels 289

9.	 To	restrict	the	list	of	entities	to	lines	only,	follow	these	steps:

a.	 Return	to	the	Configure	Structure	Tree	dialog	box	by	clicking	the	“cb”	bar.

b.	 Click	the	Show/Skip	tab.

Restricting the entities listed by Structure

c.	 Choose	the	radio	button	next	to	Show Only Selected Entity Types.

d.	 Scroll	down	until	you	find	Line,	and	then	click	the	box	next	to	it.

Choosing the Line entity

e.	 Click	OK	to	dismiss	the	dialog	box.

10.	 Now	open	the	“Line	by	Layer”	rule	in	the	Structure	panel.	Notice	that	fewer	layers	are	displayed,	because	

now	only	layers	with	lines	are	listed.

Only layers with lines listed

290 Customizing BricsCAD V19

11.	 Open	a	layer	name.	Notice	that	just	line	entities	are	listed.	

Lines on each layer

12.	 Add	a	subcategory,	such	as	the	length	of	each	line.	Follow	these	steps:

a.	 Return	to	the	Configure	Structure	Tree	dialog	box	by	clicking	the	“cb”	bar.

b.	 Right-click	Group,	and	then	choose	Add Grouping Property	from	the	shortcut	menu.

c.	 	In	the	Select	Properties	dialog	box,	navigate	to	Entities	>	Line	>	Line	>	Geometry	>	Length.

 Adding Length to the group

d.	 Click	OK.	Notice	that	Length	is	added	under	Group.

Length added to the Group section

 15 Designing Tool & Structure Panels 291

e.	 Click	OK	to	close	the	dialog	box.	Open	up	the	nodes	to	find	that	the	layers	and	lengths	of	lines	are	listed,	such	

as	layer	“A-ANNO-NOTE”	and	then	3'0".

Lines listed by layer name, and then by length

13.	 As	I	mentioned	earlier,	the	elements	seem	to	be	sorted	in	a	random	order.	Let’s	now	sort	them	alphabeti-

cally.	Follow	these	steps:

a.	 Return	to	the	Configure	Structure	Tree	dialog	box	by	clicking	the	“cb”	bar.

b.	 Right-click	Sort,	and	then	choose	Add Sorting Property	from	the	shortcut	menu.

Adding a sorting property

c.	 Choose	Entity Type,	and	then	click	OK	twice	to	dismiss	the	dialog	boxes.

d.	 Take	a	look	at	how	the	added	rule	affected	the	listing:	notice	that	the	layer	names	are	now	alphabetical.

Layer names listed alphabetically

14.	 As	a	final	step	in	this	tutorial,	let’s	switch	the	order	of	the	Layer	and	Length	rules,	like	this.

a.	 Return	to	the	Configure	Structure	Tree	dialog	box	by	clicking	the	“cb”	bar.

b.	 Select	“Length,”	and	then	click	the	up	arrow	button	to	move	it	above	the	“Layer”	rule.

Changing the order of rules

292 Customizing BricsCAD V19

c.	 Click	OK	to	dismiss	the	dialog	box.

d.	 Notice	that	lines	are	now	listed	by	length,	and	then	by	layer	name.

Lines listed by length and layer

Show/Skip Tab
The Show/Skip tab gives you options in how to display items. This lets you filter out entities you
are not interested seeing in the Structure panel, such as ordinary lines.

 Ð Show all entity types in the drawing (default)

 Ð Show only selected entities types chosen in the list below (those with the check mark)

 Ð Skip selected entity types as chosen in the list below

Options found in the Show/Skip tab

Options Tab
The Options tab provides options that control what happens with the structure tree:

 Ð Ignore tree selection — nothing happens when you select an item in the Structure panel

 Ð Highlight entities when selected in tree — (default) when you select an item in the Structure panel, it gets
highlighted in the drawing

 Ð Select entities when selected in tree — when you select an item in the panel, it is also selected in the draw-
ing, following which you can immediately edit it

 15 Designing Tool & Structure Panels 293

On entity selection, select in tree — when on, the entity you select in the drawing is highlighted
in the Structure panel

On entity deselection, collapse in tree — when on, the tree in the Structure panel collapses
when the entity is no longer selected in the drawing . This is useful, because the content in the
panel can get very long.

Specifying options

Add nested blocks — when on, includes blocks that are nested inside other blocks.

Explode external references in tree — when on, lists all elements in an xref separately; when
off, lists the xref as a single element.

294 Customizing BricsCAD V19

Notes

Creating Simple and
Complex Linetypes

BricsCAD supports two styles of linetypes, simple and complex:

•	 Simple linetypes —	consist	of	lines,	gaps,	and	dots	strung	together	in	a	variety	of	patterns.		

•	 Complex linetypes —	add	text	and	shapes	to	simple	linetypes.	

Top: Simple linetype consisting of dashes, dots, and gaps.
Above: Complex linetype for hot water pipes.

The BricsCAD package includes many simple and complex linetypes, and you can create your own,
as described in this chapter.

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Discovering commands and system variables that affect linetypes

• Understanding the special case of polylines

• Checking compatibility with AutoCAD

• Customizing linetypes

• Editing linetype definitions

• Testing new linetypes

• Creating linetypes with text editors

• Understanding the linetype format

• Creating complex linetypes

CHAPTER 16

296 Customizing BricsCAD V19

QUICK SUMMARY OF LINETYPE DEFINITIONS

Linetypes are stored in .lin files and loaded with the Linetype command. Each linetype definition consists of two lines
of text, a header that labels the linetype, followed by a line of data that describes the linetype format.

LINE 1: HEADER

Example: *Name,. _ . _ . _

* (asterisk) — indicates the start of the linetype definition.

Name — names the linetype.

, (comma) — separates the name from the description.

. __ . __ — illustrates the linetype pattern, to a maximum of 47 characters.

LINE 2: SIMPLE LINETYPE DATA

Example: A, .25,-.1,0,-.1

A — specifies the alignment flag to force the linetype to begin and end a line segment adjusted to the overall length of
the object.

.25 — specifies the length of the dash, when LtScale = 1.0.

-.1 — specifies the length of the space, using a negative value.

 0 (zero) — specifies a dot.

LINE 2: COMPLEX LINETYPE DATA

Complex linetypes provide additional parameters within square brackets, as shown in boldface below.

Example: A,1.0,-.25,[“HW”,STANDARD,S=.2,R=0.0,X=-0.1,Y=-0.1],-.40

“HW”— specifies the letters to be displayed by the linetype.

STANDARD — specifies the text style. Optional; when missing, current style is used.

S=.2 — specifies the height of the text, or its scale factor, depending on the following:

•	 When	style’s	height	=	0,	then	S	specifies	the	height	(0.2	in	this	case).

•	 When	style’s	height	is	not	0,	then	S	multiplies	the	style’s	height	(0.2x).

R=0.0 — rotates the text relative to the direction of the linetype. Optional; when missing, angle = 0. Default is in
degrees; can use r and g to specify radians or grads.

A=0.0 — rotates text relative to the x-axis to ensure that the text is always oriented in the same direction. Optional.

X=-0.1, Y=-0.1— offsets the text in the x and y directions.

Notes

Every data line must begin with a dash; every dash and dot must be separated with a space. To include comments in
the .lin file, prefix lines with a semi-colon (;).

16 Creating Simple and Complex Linetypes 297

About Simple and Complex Linetypes

Simple linetypes consist of lines, gaps, and dots ordered in a variety of patterns. This is the most
common type of linetype, and its components are shown by the figure below.

Dash Gap Dot

What dashes, gags, and dots look like

And here are some of the simple linetypes included with BricsCAD. Notice that they all consist of
the gaps, dashes, and/or dots in a variety of patterns:

Simple linetypes consisting of lines, gaps, and dots in a variety of patterns

Also included with BricsCAD are standardized linetypes defined by ISO, the International Organiza-
tion of Standards. Complex linetypes are like simple linetypes, but include text, such as ones that
indicate fence and gas lines, as illustrated below:

Complex linetypes adds characters to simple linetypes

As with colors, the convention is to assign linetypes to objects in drawings through layers — not with
the Linetype command! Using the Layer command, you assign different linetypes to various layers.

You can, however, apply linetypes to objects directly, like colors, through the Entity Properties
toolbar or Properties pane.

COMMANDS AFFECTING LINETYPES

Linetypes are not stored in drawings; instead, they have to be loaded from .lin files. It’s always been
a source of irritation to me that I gotta load the file into drawings before I can use any linetype.
There is one workaround, and just one: add all linetypes to all template drawings.

BricsCAD provides two commands loading linetypes into drawings, Linetype and -Linetype.

298 Customizing BricsCAD V19

Loading Linetypes
The Linetype command opens Drawing Explorer for loading, listing, renaming, and deleting line-
types. (In older days, this command was known as ExpLTypes, short for “explore linetypes.”) As
an alternative, you can access Drawing Explorer from the Tools menu: choose Drawing Explorer
| Linetypes.

Drawing Explorer handles all aspects of loading and assigning linetypes

The other command is -Linetype, and it operates at the command prompt. It loads linetypes, lists
the names of those already loaded, and can define new ones. It is meant mainly for use with scripts
and LISP programs.

The two commands load linetypes from these .lin files:

•	 default.lin	—	definitions	for	imperial	linetypes

• iso.lin	—	definitions	for	metric	(ISO)	linetypes

•	 standard.shx —	source	for	characters	used	by	complex	linetypes

BricsCAD stores linetypes in the following folders:

	 Window	—	C:\Users\<username>\AppData\Roaming\Bricsys\BricsCAD\V19\ en_US\support	

	 Linux	—	/home/<login>/Bricsys/BricsCAD/V19x64/en_US/Support	

	 Mac	—	/Users/<login>/Library/Preferences/Bricsys/BricsCAD/V19x64/en_US/Support

Scaling Linetypes
Like text, linetypes can be tricky to size. You have to scale the gaps and dashes in just the right way.
Too small a scale, and linetypes look solid — but takes a suspiciously long time to redraw. Too large,
and the linetype also looks solid. Here’s what the problem looks like:

LtScale = 0.01 (too small)

LtScale = 0.1 (just right)

LtScale = 1 (too big)

The effects of scale on linetypes

16 Creating Simple and Complex Linetypes 299

And to solve the problem, BricsCAD has the LtScale system variable, short for “linetype scale.” It
sets the scale of linetypes. Typically, the scale factor you use for text, dimensions, and hatch pat-
terns also applies to linetypes. Nice, eh?

SYSTEM VARIABLES AFFECTING LINETYPES

There are many system variables that control the look and size of linetypes. They happen to be
scattered all around the Settings dialog box, and so I provide this complete list of them. This first
set of variables determine the linetypes used for drawings:

	 MeasureInit	—	sets	the	initial	unit	of	measurement	for	new	drawings	(metric	or	Imperial),	and	so	determines	

which	.LIN	files	are	used	(ANSI	or	ISO)

	 Measurement	—	changes	the	units	for	the	current	drawing	between	metric	and	Imperial,	and	so	determines	

which	ANSI	or	ISO.LIN	files	are	used	

	 SrchPath	—	specifies	the	path	to	LIN	definition	files

These are the system variables that relate to linetypes applied to entities in drawings:

 CeLtype —	holds	the	name	of	the	linetype	currently	in	effect;	short	for	“current	entity	linetype”	

	 CeLtScale	—	specifies	the	current	linetype	scale	

 LtScale — stores	the	current	linetype	scale	factor;	short	for	“linetype	scale”	(default	=	1.0)

 PLineGen	—	determines	how	linetype	cross	polyline	vertices;	short	for	“polyline	generation”

	 VisRetain	—	determines	whether	changes	made	to	xref	layers,	such	as	linetypes,	are	saved	with	the	drawing

In addition to regular entities, linetypes can also be specified for parts of regular and dynamic
dimensions, and for visual styles:

	 DimLType	—	specifies	the	linetype	for	dimension	lines

	 DimLtEx1	and	DimLtEx2	—	specifies	the	linetype	for	the	first	and	second	extension	lines

 DynDimLineType	—	specifies	the	linetype	displayed	by	dynamic	dimensions	as	they	are	being	moved

	 ObscuredLType	—	specifies	the	linetype	of	obscured	line;	independent	of	zoom	scale

A final set of variables specifies the linetype scale factor in outside of traditional model space:

	 MsLtScale	—	annotatively	scales	linetypes	in	model	space

 PsLtScale	—	scales	linetypes	in	paper	space;	short	for	“paper	space	linetype	scale”

The CeLType system variable reports the name of the current linetype. You can use it as a keyboard
shortcut to change the name of the current linetype, like this:
 : celtype
 New value for CELTYPE, or . for none/<"ByLayer">: continuous

300 Customizing BricsCAD V19

The Special Case of Paper Space
Because linetypes are affected by scale, their scale becomes a problem in paper space. A linetype
scale that looks fine in model space will look wrong in paper space, because paper space almost
always has its own scale factor. By default, the scale of linetypes in paper space is 1.0 — no matter
what it may be in model space.

The solution comes with the PsLtScale system variable. Its job is to scale all linetypes relative to
paper space. Say, for example, the paper space scale is 1/4" = 1' (that’s 1:48). By setting PsLtScale
to 48, BricsCAD automatically displays linetypes 48 times larger in paper space than in model space.

The Special Case of Polylines
Then there’s a trick to employ when it comes to polylines. To understand the problem, it helps to
know how BricsCAD generates linetypes. In an attempt to apply linetypes as nicely as it can, the
software generates the linetype based on (a) the length of the object and (b) the linetype scale factor.

Essentially, BricsCAD starts at one end of the object, and then works its way to the other end. The
program then centers the linetype pattern so that it looks nice and even at both ends. You’ll never
see the linetype pattern abruptly ending midway at one end of the object. Here is how a line looks
with a linetype applied centered:

Normal length of dashes

End dash made longer to
fit overall length of line

Start dash made longer to
fit overall length of line

Centering a linetype on a line segment

Consider, then, the polyline. While it looks like one long connected line-arc-spline, it contains many
vertices, even when you do not see them. Each vertex signals the start and end of a line or arc seg-
ment. BricsCAD faithfully restarts the linetype pattern each time it encounters a vertex.

When the vertices are close together, BricsCAD never gets around to restarting the pattern, resulting
in a polyline that looks solid, or continuous. This drives some people nuts, like cartographers who
use polylines for drawing contours. The solution is to use the PlineGen system variable. When
turned off (the default), BricsCAD works as before, generating the linetype from vertex to vertex.
When changed to on, BricsCAD generates the linetype from one end of the polyline to the other
end — ah, instant relief! (This problem does not affect splines.)

16 Creating Simple and Complex Linetypes 301

Customizing Linetypes

BricsCAD has two ways of creating custom linetypes: at the command prompt, or with a text editor.
Let’s look at the first one first.

AT THE COMMAND PROMPT

Follow these steps to create new linetypes at the command prompt through the -Linetype command:

1.	 Start	BricsCAD,	and	then	enter	the	-Linetype Create	command:
 : -linetype
 Linetype: ? to list/Create/Load/Set: c

2.	 Give	a	name	to	the	linetype,	which	can	be	as	long	as	31	characters.	
 Name for new linetype: dit-dah

	 Unlike	creating	a	custom	hatch	pattern	on-the-fly,	BricsCAD	actually	stores	the	new	linetype	in	a	.lin file,	al-

lowing	you	to	reuse	it	later.	

3. At	this	point,	BricsCAD	pops	up	the	Create	or	Append	Linetype dialog	box.	

Accessing linetype files

	 The	dialog	box	lets	you	create	a	new	linetype	file	or	append	the	linetype	definition	in	an	existing,	depending	

on	your	next	step:

•	 To create	a	new	linetype	file, enter	the	name	of	a	new	.lin file.

•	 To append to	an	existing	file, select	the	name	of	a .lin	file.

	 I	find	it	easiest	to	keep	all	linetypes	in	one	file,	so	I	recommend	accepting	default.lin	—	or	iso.lin	if	I	tend	to	

work	with	ISO	(international	standard)	linetypes.

4.	 After	clicking	the	Save button	to	dismiss	the	dialog	box,	BricsCAD	checks:
 One moment... Checking existing linetypes for "dit-dah".

TIP	 If	two	linetypes	have	the	same	name,	BricsCAD	would	only	read	the	first	one	it	came	across.	
If	you	accidently	(or	otherwise)	enter	a	linetype	name	that	already	exists	—	such	as	Dashed	—	BricsCAD	
warns:

 DASHED already exists. Current definition is:
 DASHED __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ 0.50,-0.250
 Overwrite? <N>:

In	this	case,	press	enter and	then	try	naming	it	again.

302 Customizing BricsCAD V19

5.	 Describe	the	linetype	with	any	words	you	want	up	to	47	characters	long.
 Linetype description: . __ . __ . __ . __

	 A	good	descriptive	text	would	be	the	pattern	you	plan	to	create,	using	dots,	underlines,	and	spaces.

6.	 Finally!	You	get	to	define	the	linetype	pattern.	
 Linetype definition (positive numbers for lines, negative for spaces):
 A,

	 But,	what’s	this	A?	The	letter	A	forces	the	linetype	to	align between	two	endpoints.	That’s	what	causes	the	

linetypes	start	and	stop	with	a	dash,	adjusted	to	fit.	The	A	could	also	stand	for	“actually”	because,	actually,	I	

don’t	have	a	choice	when	I	create	a	linetype	on-the-fly:	BricsCAD	forces	the	letter	A	on	me.

	 Type	the	codes	after	the	A,	as	follows:
 A, .25,-.1,0,-.1

 I could go on for a total of 78 characters but I won’t.

7.		 I	press	Enter to	end	linetype	definition,	and	I’m	done.	
 Linetype "dit-dah" was defined in C:\Users\...\support\default.lin.
 Linetype: ? to list/Create/Load/Set: (Press enter.)

	 Well,	not	quite	done.	I	still	need	to	test	the	pattern.	By	the	way,	new	linetypes	are	added	to	the	end of	the	

default.lin file.

Testing the New Linetype
It is important to always test a new customization creation. As simple as they are, linetypes are no
exception. Test the Dit-Dah pattern, as follows:

1.	 Use	the	Linetype Load command	to	load	the	pattern	into	drawing:
 : -linetype
 Linetype: ? to list/Create/Load/Set: L
 Enter linetype to load: dit-dah

2.	 Up	pops	the	Select	Linetype	File	dialog	box.	Select	default.lin,	and	then	click	Open.	BricsCAD	confirms:
 Linetype DIT-DAH loaded.

3.	 Use	the	Set	option	to	set	the	linetype,	as	follows:
 ?/Create/Load/Set: s
 New entity linetype (or ?) <BYLAYER>:

4.	 Here	you	can	type	either	the	name	of	a	loaded	linetype	(such	as	“dit-dah”)	or	type	?	to	see	which	linetypes	

are	already	loaded.	

5.	 This	time,	get	serious	and	set	the	current	linetype	to	“dit-dah”:
 ?/Create/Load/Set: s
 New entity linetype (or ?) <BYLAYER>: dit-dah
 ?/Create/Load/Set: (Press enter.)

6.	 Now,	draw	a	line,	and	appreciate	the	linetype	it	is	drawn	with.	Your	debugging	session	is	over.

16 Creating Simple and Complex Linetypes 303

CREATING LINETYPES WITH TEXT EDITORS

You can edit the default.lin linetype file directly to create custom linetypes. Here’s how:

1.	 Start	a	text	editor	(not	a	word	processor),	such	as	NotePad	in	Windows,	Text	Editor	in	Linux,	or	TextEdit	in	

MacOS.

2.	 Open	the	default.lin	file.	You	find	it	in	one	of	the	following	locations:	

	 Windows	—	C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V19\ en_US\support

	 Linux	—	/home/<login>/Bricsys/BricsCAD/V19/en_US/Support	

	 MacOS	—	/Users/<login>/Library/Preferences/Bricsys/BricsCAD/V19x64/en_US/Support

Adding linetype definitions with a text editor

3.	 When	you	scroll	down	to	the	end	of	the	file,	you	see	the	Dit-Dah	pattern	you	defined	as	per	the	earlier	tuto-

rial.

4.	 You	can	modify	an	existing	linetype,	or	add	a	new	linetype.	The	process	is	exactly	the	same	as	when	you	did	

it	within	BricsCAD,	with	two	exceptions:	(1)	BricsCAD	isn’t	there	to	prompt	you;	and	(2)	you	don’t	need	to	use	

the	“A”	prefix.

5. Save	the	.lin file	with	the	same	name	(default.lin)	or	a	new	name,	then	test	it	within	BricsCAD.

TIP	 If	you	can’t	be	bothered	burrowing	all	the	way	down	to	the		\C:\Users\<login>\AppData\Roaming \
Bricsys\BricsCAD\ V19\en_US\support\ folder,	use	the	following	trick:	
	
	 1.	 Start	with	the	-Linetype	command’s	Create option.	
	 2.	 Enter	a	nonsense	name	when	prompted	for	“Name	for	new	linetype,”	like	ASDF.	
	 3.	 When	you	press	Enter,	the	Create	or	Append	Linetype	File	dialog	box	appears.	
	 4.	 Right-click	default.lin and	then	choose	Open With | Notepad.	
	
Notepad	opens	with	the	default.lin file,	ready	for	editing.

304 Customizing BricsCAD V19

Linetype Format (.lin)

The linetype definition consists of two lines of text:

LINE 1: HEADER

Line one is the header, such as *dit-dah,. _ . _ . _ where:

*	 	 Asterisk	indicates	the	start	of	a	new	linetype	definition.	DIT-DAH	Name	of	the	linetype.	

, 	 Comma	separates	the	name	from	the	description.	

. __ . __ Dot-space-spline	pattern describes	the	linetype	(to	a	maximum	of	47	characters),	which	is		

	 displayed	by	the	Linetype ?	command.

LINE 2: DATA

Line two is the data, such as A, .25,-.1,0,-.1 , where:

A “A” is the alignment flag, which forces BricsCAD to start and end the linetype with a line segment

 adjusted to the overall length of the object.

.25 First number specifies the length of dashes when LtScale = 1.0. Every linetype data line must begin

 with a dash.

-.1 Numbers with negative signs specify the length of gaps when LtScale = 1.0; every linetype data line

 must follow the initial dash with a gap.

0 Zeros draw dots.

You can use a semicolon (;) to prefix any line as a comment line. Anything after the semicolon is
ignored by BricsCAD.

COMPLEX (2D) LINETYPES

“Complex” linetypes include text characters. Truth be told, that’s all they are: text — or, more ac-
curately, shapes. See Chapter 17 for full information on shapes.

Text

Text placed in linetypes

The complex linetype is a mixture of text and simple linetype codes — the dash, gap, and dot you
learned of earlier. The text are characters that can come from any .shx font file.

You could make complex patterns using ASCII art. For example, a square can be made from a pair of
square brackets to create the box effect: [and]. A zig-zag linetype can use the slash and backslash
characters, / and \.

16 Creating Simple and Complex Linetypes 305

Here, ASCII characters created smiley faces:

Symbols created from punctuation and other characters

The text used in complex linetypes come from .shx file. The shape file format is arcane, written to
be a highly efficient form of symbol for the slow running personal computers of the 1980s. Shapes
were quickly superseded by blocks, but remain on the scene due to their use in linetypes and so on.

If you want to write a custom shape definitions, see chapter 18. Be warned, however, that cod-
ing shapes requires a knowledge of trigonometry. Jason Bourhill recommends that you use the
MkShape (make shape) utility provided by Martin Drese from
https://www.bricsys.com/applications/a/?express-tools-a589-al1002.

The Express Tools collection also contains MkLType utility that makes linetypes, without need-
ing to code them.

EMBEDDING TEXT IN LINETYPES

The hot water linetype combines a dash and a gap with the letters HW using the Standard text style
(which uses the arial.ttf font file).

Here is the code for hot water:
*HOT_WATER, Hot Water ----HW----HW----HW----HW----HW----HW--
A,1.0,-.25,["HW",STANDARD,S=.2,R=0.0,X=-0.1,Y=-0.1],-.40

Much of this looks familiar, with the exception of the colored text between the square brackets,
shown in boldface. That is how text is embedded in linetypes, and here’s what it means:

Text
“HW” 	 Prints	the	letters	between	the	dashes.	

Text Style
STANDARD	Applies	this	text	style	to	the	text.	This	is	optional;	when	missing,	BricsCAD	uses	the	current	text	style,	

whose	name	is	stored	in	system	variable	TextStyle.	

Text Scale
S=.2 S specifies the text size or scale factor. It can mean one of two things:

•	 When	the	height defined	by	the	text	style is	0	(as	is	often	the	case),	then	S defines	the	height;	in	this	

case,	the	text	is	drawn	0.2	units	tall).

•	 When	the	text	style	height	is	not	0,	then	this	number	multiplies the	text	style’s	height;	in	this	case,	the	

text	is	drawn	at	0.2	times	(or	20%)	of	the	height	defined	in	the	text	style.	

306 Customizing BricsCAD V19

Text Rotation
R		 Rotates	the	text	relative	to	the	direction	of	the	line;	R=0.0	means	no	rotation.	The	default	measurement	is	

degrees;	other	forms	of	angular	measurement	are:

•	 r for	radian,	such	as	R=1.2r	(there	are	2pi	radian	in	a	circle).

•	 g	for	grad,	such	as	R=150g	(there	are	400g	in	a	circle).

	 The	R	parameter	is	optional	and	so	can	be	left	out.	In	this	case,	BricsCAD	assumes	zero	degrees.	

Absolute
A		 Rotates	the	text	relative	to	the	x-axis	(the	“A”	is	short	for	absolute).	This	ensures	the	linetype	text	is	drawn	

so	that	it	is	always	oriented	in	the	same	direction,	no	matter	the	angle	of	the	line.	Rotation	is	always	per-

formed	within	the	text	baseline	and	capital	height.	That’s	so	the	text	isn’t	rotated	way	off	near	the	orbit	of	

Pluto.

	 The	A	parameter	is	optional	and	can	be	left	out.	

X and Y Offset
X		 Shifts	the	text	in	the	x-direction	from	the	linetype	definition	vertex,	which	helps	center	the	text	in	the	line.	

For	example,	X=-0.1	shifts	it	to	the	right	by	0.1	units.

Y		 Shifts	the	text	in	the	y-direction	from	the	linetype	definition	vertex.	Y=-0.1	shifts	text	down	by	0.1	units.

	 In	both	cases,	the	units	are	in	the	linetype	scale	factor,	which	is	stored	in	system	variable	LtScale.

Text scale factor

X = 0.1

Y = 0.5

Parameters for positioning text in a linetype

Summing up, you can create a text-based linetype with a single parameter, such as [“HW”], or you
can exercise fine control over the font, size, rotation, and position with the six parameters listed
above. BricsCAD can work with any .shx font file you have on your computer.

Parameter Meaning Optional? Example

"" Text Required “HW”
filename Name of text style Default style STANDARD
S= Text size or scale factor Style height S=0 .5
R= Rotation angle Angle = 0 R=45
A= Absolute rotation angle Angle = 0 A=0
X= Horizontal offset Offset = 0 X=0 .1
Y= Vertical offset Offset = 0 Y=-0 .1

BricsCAD does not recognize the U parameter, used by recent releases of AutoCAD to keep shapes
upright.

Patterning Hatches

Despite seemingly complex, hatch patterns consist of the same three basic elements as do
linetypes: dashes, gaps, and dots. To create repeating patterns, the pattern definition specifies offset
distances and angle, as illustrated below:

Repeating pattern of lines

Angle

Offs
et

dis
tan

ce

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Finding the source of hatch patterns

• Creating custom hatch patterns

• Understanding the default.pat file

CHAPTER 17

308 Customizing BricsCAD V19

QUICK SUMMARY OF PATTERN DEFINITIONS

Hatch patterns are stored in .pat files, and are applied with the Hatch command. Each hatch pattern definition consists
of at least two lines of text, a header that labels the pattern, followed by one or more lines of data that describe the
pattern. (Gradients are hard coded, and cannot be customized.)

LINE 1: HEADER

 Example: *Name,Description

* (asterisk) — indicates the start of the hatch pattern

Name — names the pattern

, (comma) — separates the name from the description

Description — describes the pattern

LINE 2: HATCH PATTERN DATA

Example: 45, 0,0, 0,0.125

45 — specifies the angle of the line segment

0,0 — specifies x,y coordinates of the start of the line segment.

0,.125 — specifies ending coordinates of the line segment.

dash definition — defines dashes in the line segment using the same code is in linetypes:

 • Positive number draws a dash, such as 0.25

 • Zero (0) draws a dot

 • Negative number draws a gap, such as -0.25.

Note

To include comments in the .pat file, prefix lines with a semi-colon (;).

 17 Patterning Hatches 309

The result is like the samples illustrated below.

Examples of hatching patterns provided with BricsCAD

BricsCAD cannot create hatch patterns made of circles and other nonlinear objects. BricsCAD also
can solid-fill and gradient-fill areas in any color.

BricsCAD comes with 87 hatch patterns, plus solid fill and nine gradient fill patterns. Even so, your
office drafting standard may well require additional patterns. In this chapter, we look at how to
create hatch patterns, and edit existing ones.

Where Do Hatch Patterns Come From?

The -Hatch command creates hatch patterns at the command line; Hatch displays a dialog box to
do the same thing. Unlike linetypes, the pattern file is loaded automatically the first time you use
the Hatch or -Hatch commands (formerly the BHatch command). Hatch patterns are defined in
files external to BricsCAD:

•	 default.pat	contains	the	hatch	patterns	you	use	most	commonly

•	 iso.pat	contains	hatch	patterns	as	defined	by	the	ISO

•	 Other	.pat	files	can	also	contain	hatch	patterns,	but	it	is	easier	to	keep	all	patterns	in	a	single	file	

These are the folders in which BricsCAD stores its pattern files (replace <login> with your log in
name):

Windows:		 C:\Users\<login>\AppData\Roaming\Bricsys\ BricsCAD\V19\en_US\support	

Linux: /home/<login>/Bricsys/BricsCAD/V19/en_US/Support

MacOS:		 	 /Users/<login>/Library/Preferences/Bricsys/BricsCAD/V19x64/en_US/Support

310 Customizing BricsCAD V19

HOW HATCH PATTERNS WORK

When you apply hatching to an area, BricsCAD generates a repeating pattern of parallel lines and
gaps based on the definition in the .pat file. The pattern comes to a stop when it reaches a bound-
ary; if BricsCAD cannot detect a boundary, it refuses to place the pattern.

Once the hatch is in place, you can use the Move command to move the hatch pattern elsewhere
in the drawing, if you so chose.

BricsCAD can create non-associative and associative hatch patterns; the Associative toggle is found
in the Options area of the Hatch and Gradient dialog box.

•	 Non-associative	means	the	area	of	the	pattern	is	fixed.	When	you	change	the	boundary,	the	pattern	remains	

in	place,	as	illustrated	below.	This	property	is	useful	when	you	want	the	pattern	to	remain	fixed.	

•	 Associative hatching	means	the	pattern’s	shape	updates	as	you	change	the	boundary.

Original hatch pattern
Associative hatching adjusts

to new boundary

Hatch pattern moved
(boundary remains in place)

Non-associative hatching
does not adjust to new

boundary

How associative hatching works

In either case, you can move the pattern independent of its boundary. This is because BricsCAD
treats both kinds of hatches as blocks. You can use the Explode command to explode blocks into
their constituent lines.

You can use the HatchEdit command or the Properties command to edit parameters of hatch,
solid, and gradient patterns.

 17 Patterning Hatches 311

System Variables that Control Hatches
BricsCAD has system variables that control how hatches are created, and report their most recent
settings. In the Settings dialog box (Settings command), enter “hatches” in the search field:

Settings that affect hatches

(new in v19) In V19, BricsCAD adds these hatch variables:

 Ð HpBackgroundColor — specifies the background color of the hatched area

 Ð HpColor — specifies the color of the pattern

 Ð HpIslandDetection — replaces the HpStyle variable

Creating Custom Hatch Patterns

BricsCAD provides you with two ways to create custom hatch patterns: (a) simple patterns defined
with the Hatch and -Hatch commands; and (b) edit the default.pat file or write new .pat files with
a text editor. We look at both methods in this chapter. Unlike linetypes, you cannot create hatch
patterns in Drawing Explorer.

When you create simple hatch patterns with the Hatch command, BricsCAD does not, unfortunately,
save the fruit of your labor (unlike when you create a custom linetype with Linetype.) For this
reason, think of the first method of creating custom hatch patterns on-the-fly.

312 Customizing BricsCAD V19

-HATCH COMMAND

Your options for creating a hatch on-the-fly are limited to simple patterns. Using the -Hatch com-
mand, you access the Properties option, followed by User defined, as follows:

1.	 Enter	the	-Hatch command	(formerly	the	Hatch	command,	with	no	hyphen	prefix):
 : -hatch
 Current hatch pattern: ANSI31

2.	 Select	the	P	(properties)	option,	and	then	the	U	(user	defined)	option:
 Specify internal point or: Properties/Select/Remove islands/Advanced/Draw order/
 Origin : p

 Enter a pattern name or: ? to list patterns/Solid/User defined/<ANSI31> : u

3.	 Specify	three	parameters	for	custom	hatch	patterns:	Angle,	Spacing,	and	Crosshatching.		 First,	the	angle:
 Proceed/Angle for lines <0>: 45

4. Second,	the	spacing	between	parallel	lines.
 Space between standard pattern lines <1.0000>: 2

5. Third,	decide	if	you	want	the	pattern crosshatched.	That	means	the	pattern	is	repeated	at	90	degrees	to	the	

first	one.
 Cross-hatch area? Yes/No/<No>: y

6.	 Finally,	you	select	the	object	or	boundary	to	hatch:
 Specify internal point or [Properties/Select/Remove islands/Advanced/
 Draw order/Origin]: (Pick a point in the drawing to apply the pattern.)

Doubled pattern

Angle = 45 degrees

Sp
ac

ing
 =

2 u
nit

s

Defining a custom hatch pattern inside BricsCAD

BricsCAD draws the pattern, but — as mentioned earlier — the custom hatch is not saved to a .pat file.

 17 Patterning Hatches 313

HATCH COMMAND

Creating custom hatch patterns with the Hatch command is more like filling out a form:

1.	 From	the	Draw menu,	select	Hatch.	(Alternatively,	type	Hatch at	the	command	prompt).	Notice	the	Hatch	

and	Gradient	dialog	box.

Hatch and Gradient dialog box

2.	 From	the	Type	drop	list,	select	Custom.

Location of parameters for user-defined hatch patterns in the dialog box

3.	 BricsCAD	allows	you	to	enter	values	for	Angle,	Spacing,	and	Cross Hatch,	as	well	as	color	of	the	cross-hatcing	

and	the	background	color.	Enter	values	such	as	these:
 Angle 45
 Spacing 2
 Cross Hatch Yes

4. Click	the	 	Pick points in boundaries button,	and	then	select	the	area	you	want	hatched.	

5.	 Press	Enter to	return	to	the	dialog	box,	and	then	click	OK.	BricsCAD	applies	the	custom	pattern.

314 Customizing BricsCAD V19

Understanding the .pat Format

Let’s dig into the contents of the default.pat file to get a better understanding of how a pattern is
constructed.

1. Start	a	text	editor	(not	a	word	processor),	such	as	Notepad	on	Windows,	Text	Edit	on	Linux,	or	TextEdit	on	

Mac.

2.	 In	Windows,	open	the default.pat file	from	the	\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V14x64\

en_US\support	folder.

	 In	Linux,	open	the	default.pat	file	from	the /home/<login>/Bricsys/BricsCAD/V19/en_US/Support	folder.

	 In	MacOS,	open	the	default.pat	file	from	the /Users/<login>/Library/Preferences/Bricsys/BricsCAD/V19x64/

en_US/Support/default.lin	folder.

3.	 Scroll	down	a	bit,	and	take	a	look	at	the	seemingly-incomprehensible	series	of	numbers	and	punctuation	

contained	by	this	file.	I’ve	reproduced	the	first	dozen	lines	here:

 ; Note: Dummy pattern description used for ‘Solid fill’.
 *SOLID, Solid fill
 45,0,0,0,0.1

 *ANSI31,ANSI Iron
 45, 0,0, 0,0.125

 *ANSI32,ANSI Steel
 45, 0,0, 0,0.375
 45, .176776695,0, 0,.375

COMMENT AND HEADER LINES

The definition of a hatch pattern consists of two or more lines of text. The first line is called the
header, such as *SOLID, Solid fill.

Comment
The semicolon (;) indicates a comment line, such as
; Note: Dummy pattern description used for ‘Solid fill’.

That lets you include notes to yourself that are ignored by BricsCAD.

Start of Definition
The asterisk (*) is important, because it signals to BricsCAD the start of a new hatch pattern
definition.

Pattern Name
Following the asterisk comes the name for the hatch pattern, such as SOLID. The name must be
unique in the file. If it isn’t, BricsCAD uses the first pattern it finds by that name.

The comma following the name merely separates the name from the description. The comma is
optional; it doesn’t have to be there: a space works just as well.

 17 Patterning Hatches 315

Description
The text following the pattern name is the description displayed by the -Hatch ? command, such
as “Solid fill.” This description is also optional, but highly recommended. You are limited to a maxi-
mum of 80 characters for the name, comma, and the description. If you need more room for the
description, use comment lines, such as:
; Note: Dummy pattern description used for ‘Solid fill’.
*SOLID, Solid fill

THE HATCH DATA

With the comment lines and the header line out of the way, let’s get down to the nitty-gritty hatch
pattern data and how it is coded. Lines 2 and following are the data, such as:
0, 0,0, 0,.275, .2,-.075 90, 0,0, 0,.275, .2,-.075

Every line of data uses the same format:
angle, xOrigin, yOrigin, xOffset, yOffset [, dash1, ...]

Angle
Angle is the angle at which this line of hatch pattern data is displayed. The “0” means the hatch line
is drawn horizontally; a “90” means the line is drawn vertically, and so on. A comma (,) separates
the numbers.

xOrigin and yOrigin
The xOrigin specifies that the first line of the hatch pattern passes through this x-coordinate. The
value of the yOrigin means that the first line of the hatch pattern passes through this y-coordinate.

xOffset and yOffset
The xOffset specifies the distance between line segments, aka the gap distance. You use this pa-
rameter only to specify the offset for vertical or diagonal lines (To specify the distance between
dashes, use the dash1 parameter.) In most hatch patterns, xOffset has a value of 0.0. Even though
this parameter is rarely used, it is not optional.

The yOffset is the vertical distance between repeating lines, and is used by every hatch pattern.

X origin
Y origin

Angle = 45 degrees

X spacing

Y spacing

Defining hatch patterns through spacing, angle, and origin

316 Customizing BricsCAD V19

Dash1,...
dash1 defines the dashes in the hatch pattern line (the code is the same as for linetypes):

•	 A	positive	number,	such	as	0.25,	is	the	length	of	the	dash.	

•	 A	0	draws	a	dot.	

•	 A	negative	number,	such	as	-0.25,	draws	a	gap.	

TIP	 The	dot	drawn	by	the	hatch	pattern	may	create	a	problem	when	it	comes	time	to	plot.	If	you	
find	that	the	dots	in	a	hatch	pattern	are	not	printed,	use	a	very	short	line	segment,	such	as	0.01,	instead	of	
a	0.

When you are finished editing a pattern, save the .pat file.

ADDING SAMPLES TO THE HATCH PALETTE

BricsCAD adds visual samples of your custom hatch patterns to the palette automatically. You can
have more than one .pat file; however, the additional ones are limited to one pattern definition
per file, and the definition’s name must match the file name.

TIPS ON CREATING PATTERN CODES

Some miscellaneous comments on hatch pattern coding:

Tip 1: Hatch pattern lines are drawn infinitely long. What this means is that BricsCAD draws the
line as long as necessary, as long as it reaches a boundary. BricsCAD will not draw the hatch pat-
tern unless it does find a boundary.

Tip 2: At the very least, each line of pattern code must include the angle, x- and y-origin, and
the x- and y-offset. This draws a continuous line.

Tip 3: The dash1 parameter(s) is optional but when used draws a line with the dash-gap-dot
pattern.

Tip 4: It’s a lot easier for someone else (or you, six months from now) to read your hatch pattern
code if you use tabs and spaces to format the code into nice columns.

Tip 5: To change the angle of a hatch pattern upon placing it in the drawing, you’ve got a couple
of options:

•	 	 Specify	the	angle	during	the	Hatch command.

•	 Set	the	angle	in	system	variable	SnapAng.	The	effect	of	SnapAng on	the	hatch	pattern	angle	is	additive:	if	

the	hatch	pattern	defines	the	lines	drawn	at	45	degrees	and	SnapAng is	20	degrees,	then	BricsCAD	draws	

the	hatch	lines	at	65	degrees.	For	example:
 : snapang
 New current angle for SNAPANG <0>: 20

 17 Patterning Hatches 317

The x-offset and y-offset parameters are unaffected by the angle parameter, because x-offset is
always in the direction of the line and y-offset is always perpendicular (90 degrees) to the line.

If you are uncomfortable using system variables, then the Snap command provides the same op-
portunity via the Rotate option:
: snap
Snap is off (x and y = 0.5000): ON/Rotate/Style/Aspect/<Snap spacing>: r
Base point for snap grid <0.0000,0.0000>: 1,1
Rotation angle <0>: 45

Tip 6: You can specify a weight (or line width) for hatch patterns line. If you wish, you can also
make thick-looking patterns by using closely spaced lines, like this:
*Thick_Line, Closely spaced lines
0, 0,0, 0,.25 0, 0,.01, 0,.25 0, 0,.02, 0,.25

Tip 7: To draw dash and gap segments at an angle, use the sine of the angle in degrees, like this:

Angle Dash length (sine)

0 0
30 0 .433
45 0 .707
60 0 .866
90 1 .0

Tip 8: You cannot specify arcs, circles, and other round elements in a hatch pattern file. Everything
consists of straight lines and dots. To simulate circular elements, use a series of very short dashes.

318 Customizing BricsCAD V19

Notes

Decoding Shapes
and Fonts

BricsCAD uses .shx files for fonts, shapes, GD&T symbols, and complex linetypes. You can
create your own source .shp files, the subject of this chapter. BricsCAD, unfortunately, lacks the
compiler needed to convert .shp to that compiled .shx files that BricsCAD works with.

BricsCAD can display fonts from TrueType (.ttf) and AutoCAD shape (.shx) files.

In addition to using .shx files for displaying fonts, BricsCAD use a second type of .shx file for simple
blocks-type entities known as “shapes,” and so includes the Load and Shape commands for load-
ing and placing them.

(Explanations updated for BricsCAD by Jason Bourhill of CAD Concepts,
 www.cadconcepts.co.nz.)

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Understanding shapes with fonts, complex linetypes, shapes, and GD&T symbols

• Learning about shape files

• Detailing the shape file format

CHAPTER 18

320 Customizing BricsCAD V19

QUICK SUMMARY OF SHAPE DEFINITIONS

Shapes and fonts are defined by .shp files, which need to be compiled into .shx files. A shape definition consists of at
least two lines of text, a header that labels the shape or font, followed by one or more lines of data that describe the
shape. The end of the data section is signified with a zero.

LINE 1: HEADER

*130,6,NAME

* (asterisk) — indicates the start of the shape definition.

130 — numbers the shape; fonts use the character’s ASCII number. Range is 1-255.

6 — specifies the total number of data bytes.

NAME — names the shape; must be in uppercase, and a maximum of 16 characters

LINE 2: DATA

014,002,01C,001,01C,0

Shape data consists of vector and instruction codes. Vector codes define movement and drawing in 16 directions:

 0 — first digit (always 0) indicates the number is hexadecimal

 1 — second character specifies the vector length, and ranges from 1 through F (15 units).

 4 — third character specifies the direction of the vector

INSTRUCTION CODES

Hexadecimal Decimal Description

000 0 End of shape definition.
Basic Draw and Move
001 1 Begin draw mode (pen down) .
002 2 End draw mode (pen up) .
Scaling
003 3 Divide vector lengths by next byte .
004 4 Multiply vector lengths by next byte .
Memory
005 5 Push current location onto stack .
006 6 Pop current location from stack .
Draw Subshape
007 7 Draw subshape number given by next byte .
Advanced Draw and Move
008 8 X,y displacement given by next two bytes .
009 9 Multiple x,y displacements; terminated with (0,0) code .
Arcs
00A 10 Octant arc defined by next two bytes.
00B 11 Fractional arc defined by next five bytes.
00C 12 Arc defined by x,y displacement and bulge.
00D 13 Multiple bulge-specified arcs.

 18 Decoding Shapes and Fonts 321

Fonts, Complex Linetypes, and Shapes

BricsCAD uses shapes for fonts, the text in complex linetypes, and shapes.

SHX FONTS

In the early days of CAD, fonts were coded to be highly efficient. Computers didn’t have much
horsepower, and text was one of the slowest parts of the drawing display. To solve the problem of
vector fonts taking a long time to display on the slow computers of the 1980s, Autodesk invented
the SHX format: the simpler the font, the fewer the lines, the faster the display.

The simplest font of all, Txt.shx, looked ugly, but was able to draw most characters with just eight
lines. The drawback to SHX-based shapes, however, is that they are not well-suited to defining the
complex curves that truly represent fonts, nor can they be properly filled.

As computers became faster over time, the number of lines used to draw characters increased.
Eventually, Apple’s TrueType font technology allowed for truly smooth looking and fully filled fonts,
even in CAD drawings and on plots. The gallery below illustrates the development of the letter Q,
from the original Txt.shx to the more recent TimesRoman.ttf.

Q defined
by 9 lines

X origin
Y origin

Q defined
by 25 lines

Q defined
by doubled lines

Q defined
by serifs

Q defined
by triple lines

Q defined
by TrueType font

Txt.shx RomanS.shx RomanD.shx RomanC.shx RomanT.shx TimesRoman.ttf

Development of the letter Q from the 1980s to today

These are the file names of the SHX files included with BricsCAD:

SHX Font File Meaning

complex .shx Serif font
hangul .shx Korean font
isocp .shx ISO standard font (European)
italic .shx Single-stroke italic font
italicc .shx Double-stroke italic font
italict .shx Triple-stroke italic font
japanese .shx Japanese font
monotxt .shx Mono-spaced font (every character takes up the same width)
romanc .shx Triple-stroke serif font
romand .shx Double-stroke serif font
romans .shx Single-stroke serif font
romant .shx Triple-stroke serif font (same as RomanC)
simplex .shx Non-serif font
trad_chin .shx Chinese font
txt .shx Minimal non-serif font

322 Customizing BricsCAD V19

About Fonts in BricsCAD
To be compatible with old drawings, BricsCAD supports the use of original .shx fonts as well as
today’s .ttf TrueType fonts. TTF files are included by default with the Windows and MacOS operat-
ing systems, and with some Linux systems. BricsCAD does not support PostScript fonts, such as
those provided as PFA and PFB files.

To load a font file into a drawing, use the Style command (a.k.a. Drawing Explorer), and then place
text with the Text, MText, and other text-related commands. BricsCAD accesses TrueType fonts
from each operating system’s default font folder:
Windows: C:\Windows\Fonts

Linux: /usr/share/fonts/truetype

MacOS: /Users/Library/FontCollections

If a drawing displays fonts incorrectly, then the problem lies with BricsCAD not finding the location
of the source font file. Here you have two solutions:

 Ð Use Settings | Files | Support file search path to add paths

 Ð Add the missing font files to the existing paths

TIP	 To	obtain	a	list	of	all	fonts	used	by	a	drawing,	run	the	eTransmit	command.

USING SHX IN COMPLEX LINETYPES

Complex linetypes use shapes for the text portion. The position and size of the text is defined in
the default.lin and iso.lin linetype files, while the characters themselves are defined by the arial.ttf
font, by default. The font used is determined by the Standard text style; change the style, and the
linetype font changes.

Text from Txt.shp file

Linetype from Default.lin file

Complex linetype showing how is combines text with regular linetypes

They are loaded and placed with the Linetype command. For details, see the chapter on linetypes

SHX IN SHAPES

Shapes are an early form of block (symbol). Like fonts, they displayed very quickly on the slow
computers of the 1980s. Unfortunately, they were very hard to code; today it is so much easier to
use blocks, and so shapes are no longer used for symbols. Nowadays, shapes are used only by the
Tolerance command.

Shapes use a format of the SHX file that is nearly identical to that of fonts. Shapes must first be
loaded into the drawing with the Load command, and then placed in the drawing with the Shape
command.

 18 Decoding Shapes and Fonts 323

SHX IN GD&T

GD&T (geometric dimensioning and tolerances) symbols are used for machining parts precisely.

Tolerance symbols

The symbols are placed by the Tolerance command, and are based on shapes from the gdt.shx file.

SHAPE COMPATIBILITY WITH AUTOCAD

For fonts, complex linetypes, shapes, and tolerances, BricsCAD can use any .shx file that AutoCAD
can use.

Both CAD packages use a .fmp file (short for “font map”) to substitute similar looking .shx fonts for
those found in each other’s drawings. At time of writing, BricsCAD specifies default.fmp but has
not implemented it.

About Shape Files

The shape file format is arcane, written to be a highly efficient form of symbol for the slow running
personal computers of the 1980s. Shapes were quickly superseded by blocks, but remain on the
scene due to their use in linetypes and so on.

Coding custom shape definitions requires a knowledge of trigonometry. Jason Bourhill recom-
mends that you use the MkShape (make shape) utility provided by Martin Drese from
https://www.bricsys.com/applications/a/?express-tools-a589-al1002.

There are two kinds of files used for shapes: .shp and .shx. The differences between them are as
follows:

 Ð .shp are shape source files. When you write or edit a shape or font, you work with the .shp file. A portion of a
typical .shp file looks like this:

 *130,6,TRACK1
 014,002,01C,001,01C,0

 Ð .shx are compiled shape files. These are the files that are loaded into BricsCAD for use with fonts, tolerances,
and so on.

324 Customizing BricsCAD V19

TIPS	 	BricsCAD	is	incapable	of	compiling	.shp	files	into	.shx	format,	so	you	can	use	AutoCAD	or	the	
Compile	utility	to	compile	the	shape	files	you	create	using	the	information	in	this	chapter.	The	Compile	util-
ity	is	part	of	the	free	BCadTools	collection	by	Torsten	Moses	from		
https://www.bricsys.com/applications/a/?bcadtools-freeware-a335-al528	
	
	 Normally,	you	cannot	edit	.shx files,	unless	you	have	access	to	a	shape	decompiler	program	writ-
ten	by	third	parties.	Autodesk	offers	the	DumpShx.Exe	utility	in	AutoCAD’s	Express	folder,	or	else	search	
online	for	decompilers.

THE SHAPE FILE FORMAT

Autodesk defined two formats for the shape file: one for shapes (simple blocks), and one for fonts.
The difference between the two types is subtle: the font version of the file includes a code 0 to
alert the CAD system to treat the file as a font definition. When the 0 is missing, the file is treated
as a shape definition.

BricsCAD can load both forms of shape file, as shapes with the Load command, and as fonts with
the Style command. You cannot, unfortunately, distinguish between the two easily. One way is to
guess by the file or folder names. For instance, italic.shx is clearly a font file, while ltypeshap.shx is
probably a shape file. Other file names can be vague: symusic.shx seems like a shape file, but in fact
is a font file (musical symbols). BricsCAD does not warn you if you load the wrong kind of shape
file with the Load command; in contrast, the Style command lists only font-related SHX files.

Here are some aspects about the shape file format:

 Ð Shape files typically define one or more shapes, up to 258 in total.

 Ð Font files typically defines all the characters for a single font, such as A-Z, a-z, 0-9, and punctuation.

 Ð Unicode font files can have up to 32,768 definitions.

Like many other customization files, shape definitions consist of two or more lines. The first line is
the header, which labels the shape, while the second (and following) lines define the shape through
codes. The final code in each definition is 0, which is called the terminator.

The general format of a shape definition consists of a header line, followed by one or more defini-
tion lines:
*shapeNumber,totalBytes,shapeName
byte1,byte2,byte3,...,0

Each line can be up to 128 characters in length; shape files with longer lines will not be compiled.
Each definition is limited to a total of 2,000 bytes.

You can use blank lines to separate shape definitions and the semicolon (;) to include comments
in the file.

 18 Decoding Shapes and Fonts 325

HEADER FIELDS

The following describes the fields of the shape’s header description:

Definition Start
*130,6,TRACK1

The asterisk signals AutoCAD that the next shape definition is starting.

shapeNumber
*130,6,TRACK1

Each shape requires a unique number by which it is identified. For fonts, the number is the equiva-
lent ASCII code, such as 65 for the letter A.

TIP	 The	shapeNumbers 256,	257,	and	258	are	reserved	for	the	degree,	plus-or-minus,	and	diameter	
symbols.	

totalBytes
*130,6,TRACK1

After defining the shape, you have to add up the number of bytes that describe the shape, includ-
ing the terminator, 0. Makes no sense to me. There is a limit of 2,000 bytes per shape definition.
Unicode shape numbers use two bytes each.

shapeName
*130,6,TRACK1

Shape names can be mixed case. Maximum length of the name is 16 characters; excess characters
are truncated.

DEFINITION LINES

The header line is followed by one or more lines that define the shape or font. This is the nitty-gritty
part of shape files, and you will now see why they are rarely used anymore.

bytes
014,002,01C,001,01C,0

The shape is defined by “bytes,” called that because each code is a single byte (the computer mea-
surement) in size. Bytes define vector lengths and directions, or instruction codes. They can be in
decimal (base 10) or hexadecimal (base 16) format. Definition lines are a maximum of 128 char-
acters long (including commas), and a maximum of 2,000 bytes overall (not including commas).
The last definition line ends with a 0.

TIP	 When	the	first	character	of	a	byte	is	a	0,	the	two	characters	following	are	in	hexadecimal,	such	
as	00C	(12,	in	decimal).

326 Customizing BricsCAD V19

VECTOR CODES

Vector codes describe how the shape is drawn. They define movement (pen up) and drawing (pen
down). Vector codes are limited to 16 directions, increments of 22.5 degrees, as shown by the figure:

0

1

2

F

E

8

7

6

9

A

345

DCB

Vectors defining direction and distance

Notice that the lengths are not radial. Diagonal vectors such as 2 and E are 1.414 times longer than
the orthogonal vectors, such as 4 and 0. (Recall that 1.414 is the square root of 2.)

Vector codes are always in hexadecimal notation, such as 02C:

•	 First	character	is	always	0	to	indicate	that	the	number	is	in	hexadecimal.	

•	 Second	character	is	the	vector	length,	ranging	from	1	through	F	(15	units).

•	 Third	character	is	the	direction,	as	noted	by	the	figure	above.	

Thus, 02C would draw a line 2 units long in the -y direction (downward). By now, you can see that
you need to understand hexadecimal notation.

Hexadecimal Conversion
Autodesk used hexadecimal (base 16) notation, because it was more efficient for use by computers
in the days when CPUs were slow. Back then, programmers did a lot of work to minimize the load
on the computer. Here is a conversion table between decimal and hexadecimal numbers:

Decimal Hexadecimal

0 . . . 9 0 . . . 9
10 A
11 B
12 C
13 D
14 E
15 F

 18 Decoding Shapes and Fonts 327

INSTRUCTION CODES

In addition to describing direction and length, shapes use codes to provide instructions. Code
numbers can be in decimal (dec) or hexadecimal (hex). Hex codes always have three digits, the first
being a 0 (zero). Notice that some codes rely on additional codes following. And, note that shapes
are limited to lines, arcs, and spaces.

Hex Dec Description

000 0 End of shape definition.

Basic Draw and Move
001 1 Begin draw mode (pen down) .
002 2 End draw mode (pen up) .

Scaling
003 3 Divide vector lengths by next byte .
004 4 Multiply vector lengths by next byte .

Memory
005 5 Push current location onto stack .
006 6 Pop current location from stack .

Draw Subshape
007 7 Draw subshape number given by next byte .

Advanced Draw and Move
008 8 X,y displacement given by next two bytes .
009 9 Multiple x,y displacements; terminated with (0,0) code .

Arcs
00A 10 Octant arc defined by next two bytes.
00B 11 Fractional arc defined by next five bytes.
00C 12 Arc defined by x,y displacement and bulge.
00D 13 Multiple bulge-specified arcs.

Fonts Only
00E 14 Process next command only if vertical text code exists .

A stack is a specific type of memory called FILO, short for “first in, last out.” When two numbers are
stored in the stack memory, the last number stored is the first one out. Think of an elevator, where
the first person in is usually the last one out.

End of Shape - 0/000
Code 0 must mark the end of every shape definition. It appears at the end of the last line.
00C,(2,0,-127),0

In hex notation, 0 appears as 000.

328 Customizing BricsCAD V19

Draw Mode - 1/001
Code 1 starts drawing mode (“pen” is down). By default, every shape definition starts with draw
mode turned on.

2/002: Move Mode -
Code 2 starts move mode (“pen” is up). In the sample below, the pen is raised before moving to a
new location.
2,8,(-36,-63),1,0

Reduced Scale - 3/003
Code 3 specifies the relative size of each vector. Each shape starts off at the height of one of the
orthogonal vectors, such as 4. To make the shape smaller, use code 3 followed by a byte specify-
ing the scale factor, 1 through 255. For example, the following code draws the shape half as large:
3,2

TIP	 Within	a	shape	definition,	the	scale	factor	is	cumulative.	Using	the	same	scale	code	twice	multi-
plies	the	effect.	For	example,	3,2	followed	by	another	3,2	makes	part	of	the	shape	four	times	smaller.		
	 At	the	end	of	the	shape	definition,	return	the	scale	to	unity	so	that	other	shapes	are	not	af-
fected.		

Enlarged Scale - 4/004
To make the shape larger, use code 4 followed by a byte specifying the scale factor, 1 through 255.
For example, the following code draws the shape twice as large:
4,2

Note that you can use the 3 and 4 codes within a shape definition to make parts of the shape larger
and smaller.

Save (Push) - 5/005
Code 5 saves (pushes) the current x,y-coordinates to the stack memory. You then use code 6 to recall
(pop) the coordinates for later use. The stack memory is limited to four coordinates. By the end
of the shape definition, you must recall all coordinates that you saved; i.e., there must be an equal
number of code 5s and 6s, as shown below:
2,14,8,(-8,-25),14,5,8,(6,24),1,01A,016,012,01E,02C,02B,01A,2,
8,(8,5),1,01A,016,012,01E,02C,02B,01A,2,8,(4,-19),14,6,
14,8,(8,-9),0

Recall (Pop) - 6/006
Code 6 recalls (pops) the most-recently saved coordinates from the stack memory.

 18 Decoding Shapes and Fonts 329

Subshape - 7/007
Code 7 calls a subshape, which is simply another shape. Shapes can be used within other shapes,
which helps reduce the tedium of coding shapes. Code 7 is followed by reference to another shape
number, between 1 to 255. (Recall that all shapes within a .shp file are identified by number.) For
example:
7,2

calls shape 2 as a subshape.

X,y Distance - 8/008
Codes 8 and 9 overcome the restriction that the vector codes (just 16 directions) place on drawing.
Code 8 defines a distance using two bytes that range from -128 to 127:
8,xDistance,yDistance

The example below shows code 8 being used often:
2,14,3,2,14,8,(-21,-50),14,4,2,14,5,8,(11,25),1,8,(-7,-32),2,
8,(13,32),1,8,(-7,-32),2,8,(-6,19),1,0E0,2,8,(-15,-6),1,0E0,2,
8,(4,-6),14,6,14,3,2,14,8,(21,-32),14,4,2,0

In the first line of code above, 8,(-21,-50) draws 21 units left (-x), and 50 units down (-y).

X,y Distances - 9/009
Whereas code 8 specifies a single coordinate, code 9 specifies a series of coordinates, terminated
by (0,0). For example:
9,(1,2),(-3,4),(5,-6),(0,0)

Octant Arc - 10/00A
Code 10 defines an octant arc, which is an arc whose angle is limited to multiples of 45 degrees, as
shown in the following figure. The arc always starts at position 0, and then moves counterclockwise.

0

1

7

4

3

5

2

6

Defining the length of an arc through octants

330 Customizing BricsCAD V19

 The arc is specified by the following bytes:
10,radius,- 0 startingOctant octantSpan

•	 10	specifies	an	octant	arc.

•	 radius is	a	value	between	1	and	255.	

•	 Negative	sign	changes	the	direction	of	the	arc	to	clockwise;	leave	it	out	for	counterclockwise	direction.

•	 0 specifies	the	following	characters	are	hexadecimal.

•	 startingOctant specifies	where	the	arc	starts;	the	value	ranges	between	0	and	7).

•	 octantSpan specifies	how	hard	the	arc	travels,	again	a	number	between	0	through	7.	

TIPS	 When	octantSpan is	0,	the	shape	draws	a	circle.	
	
	 The	octant	arc	code	usually	uses	parentheses	to	make	itself	clearer,	such	as:	
	 	 10,(25,-040)

Fractional Arc - 11/ 00B
Code 11 is more useful because it draws arcs that don’t end and start at octant angles. Its specifica-
tion requires, however, five bytes:
11,startOffset,endOffset,highRadius,radius,- 0 startingOctant octantSpan

•	 11 defines	the	fractional	arc.

•	 startOffset specifies	how	far	(in	degrees)	from	the	octant	angle	the	arc	begins.

•	 endOffset specifies	how	far	from	an	octant	angle	the	arc	ends.	

•	 highRadius specifies	a	radius	larger	than	255	units;	when	the	arc	has	a	radius	of	255	units	or	smaller,	then	this	

parameter	is	0.	The	highRadius is	multiplied	by	256,	then	added	to	the	radius value	to	find	the	radius	of	the	

arc.

•	 radius is	a	value	between	1	and	255.	

•	 Negative	sign	changes	the	direction	of	the	arc	to	clockwise;	leave	it	out	for	counterclockwise	direction.

•	 0 specifies	the	following	characters	are	hexadecimal.

•	 startingOctant specifies	where	the	arc	starts;	the	value	ranges	between	0	and	7.

• octantSpan specifies	how	far	the	arc	travels,	again	a	number	between	0	through	7.

TIP	 Here	is	how	Autodesk	suggests	determining	the	value	of	startOffset and	endOffset:	
1.	 Determine	the	offsets	by	calculating	the	difference	in	degrees	between	the	starting	octant’s	boundary	
(which	is		
						always	a	multiple	of	45	degrees)	and	the	start	of	the	arc.		
2.	 Multiply	the	difference	by	256.	
3.	 Divide	the	result	by	45.	

Bulge Arc - 12/00C
Code 12 draws a single-segment arc by applying a bulge factor to the displacement vector.
0C,xDisplacement,yDisplacement,bulge

• xDisplacement and	yDisplacement specify	the	starting	x,y-coordinates	of	the	arc.	

• bulge specifies	the	curvature	of	the	arc.	All	three	values	range	from	-127	to	127.	

 18 Decoding Shapes and Fonts 331

This is how Autodesk says the bulge is calculated: “If the line segment specified by the displacement
has length D, and the perpendicular distance from the midpoint of that segment has height H, the
magnitude of the bulge is ((2 * H / D) * 127).”

Displacement

Height

Calculating the size of a bulge

A semicircle (180 degrees) would have a bulge value of 127 (drawn counterclockwise) or -127
(drawn clockwise), while a line has a value of 0. For an arc of greater than 180 degrees, use two
arcs in a row.

Polyarc - 13/00D
Code 13 draws a polyarc, an arc with two or more parts. It is terminated by (0,0).
13,(0,2,127),(0,2,-127),(0,0)

TIP	 To	draw	a	straight	line	between	two	arcs,	it	is	more	efficient	to	use	a	zero-bulge	arc,	than	to	
switch	between	arcs	and	lines.

Flag Vertical Text Flag - 14/00E
Code 14 is for fonts only, and only fonts that are designed to be placed horizontally and vertically.
When the orientation is vertical, the code following is processed; if horizontal, the code is skipped.

332 Customizing BricsCAD V19

Notes

Coding with Field Text

CHAPTER 19

Fields are a special form of text that update automatically. Fields look like text with a gray
background, and show values provided by BricsCAD or the operating system, such as the diameter
of a circle or the date and time. To show new values, the text can updated manually or automatically.

In this chapter, you learn how to place fields in mtext, regular text, and in attributes, as well as how
to customise the look of fields.

CHAPTER SUMMARY

The following topics are covered by this chapter:

• Placing field text with the Field, MText, and AttDef commands

• Changing field text

• Exhaustive references of all field codes

334 Customizing BricsCAD V19

For instance, the circle illustrated below at left has its area, center point, and so on described by
regular text (white background) and by field text with the gray background. The gray background
is only displayed and not plotted, and can be turned off with the FieldDisplay variable.

When the size of the circle is reduced and the field text updated, new values show up for the ones
that changed — the area, circumference, and radius. See figure at right.

Left: Circle with field text in gray, and regular text.
Right: Changed circle with updated field text.

Placing Field Text

Field text is added to drawings through the Field, Text, MText, AttDef, and Table commands, and
can be placed in dimensions and leaders (as mtext). Let’s take a look at each one.

FIELD COMMAND
The Field command places field text in drawings in a manner similar to the Text command, placing
single lines of text. It operates identically in Linux, Mac, and Windows. For this tutorial, the draw-
ing’s creation date is inserted as a field.

1.	 Enter	the	Field command.
 : field

	 Notice	that	BricsCAD	displays	the	Field	dialog	box.	

Field dialog box

 19 Coding with Field Text 335

2.	 Select	a	field	that	you	want	by	selecting	a	group	(such	as	Date	&	Time	or	Document),	choosing	a	field name	

from	the	group	(like	CreateDate	or	Author),	and	then	applying	formatting,	if	available.	

	 For	this	tutorial,	the	task	is	to	insert	the	creation	date	as	a	field:	CreationDate	is	in	the	Date	&	Time	group.	Fol-

low	these	steps:	

a.	 Under	Field	Names,	open	the	Date & Time	node	by	clicking	the	+	button.	

Fields available for Date & Time

b.	 Notice	the	fields	that	are	available	for	specifying	dates.	Choose	CreateDate.	

c.	 Notice	that	the	empty	part	of	the	dialog	box	suddenly	fills	up	with	all	kinds	of	options	related	to	format-

ting	dates	and	times.

Formatting options for the CreateDate field

336 Customizing BricsCAD V19

	 You	can	format	the	date	field	by	selecting	a	format	from	the	Examples column,	or	else	construct	your	

own	format.		For	this	tutorial,	scroll	down	and	then	choose		the	one	that	looks	like	“Thursday,	April	23,	

2014.”	(The	exact	date	displayed	will	differ.)

Selecting a format for the date

	 Notice	that	the	Date Format	area	shows	the	date’s	format	code:	dddd,	MMMM	dd,	yyyy.	This	is	where	

you	can	edit	the	formatting	code,	something	that	I	describe	later.

3.	 Click	OK.	In	the	command	panel,	notice	that	BricsCAD	prompts	you	with	a	set	of	Text-like	options.	(Incor-

rectly,	it	shows	“MTEXT”;	it	should	say	“TEXT.”)
 MTEXT Current text style: "Standard" Text height: 2.5

4.	 Pick	a	point	in	the	drawing	to	place	the	field	text:
 Specify start point or [Height/Justify]: (Enter an option, or else pick a point)

	 BricsCAD	places	the	field	in	the	drawing	with	today’s	date,	using	the	current	text	style.	(The	date	you	see	will	

differ	from	the	one	shown	below.)

	 If,	however,		the	drawing	is	a	new	one	and	has	not	been	saved,	then	all	you’ll	see	are	four	dashes,	like	this:

	 This	is	the	way	that	BricsCAD	tells	you	a	field	lacks	a	valid	value.	To	give	the	drawing	a	creation	date,	use	the	

Save command.	

When	a	field	displays	four	hash	marks,	like	####	,	it	means	the	field	value	is	invalid	for	some	reason.

 19 Coding with Field Text 337

FIELDS IN MTEXT
If you want to embed field text with regular text, then use the MText or AttDef commands; the Text
command and dimensioning commands can’t do this. Embedding lets you mix regular text and field
text in useful ways, such as the combination of “Date: ” with a dynamic date.

In this tutorial, you place a field that reports the file name of the drawing.

1.	 Start	the	MText	command,	and	then	answer	its	prompts:
 : mtext
 Multiline Text: First corner for block of text: (Pick a point)
 Select Opposite corner for block of text or [Justification/Rotation angle/text Style/
 text Height/Direction/Width]: (Pick another point)

2.	 Type	some	text,	such	as	“Drawing	Name:”.	

3.	 To	insert	the	field	text,	press	Ctrl+F.	

	 Alternatively,	in	the	Text	Formatting	toolbar,	click	the	 	Field	button.	

	 Or	else	right-click	the	Text	Formatting	toolbar,	and	then	from	the	shortcut	menu	select Insert Field.

4.		 Notice	that	the	Field	dialog	box	opens.	To	choose	the	field	for	displaying	the	name	of	the	drawing	file,	follow	

these	steps:

Choosing formatting options for the file name

338 Customizing BricsCAD V19

a.	 In	the	Field	Names	list,	open	the	Document node.

b.	 Under	Document,	choose	Filename.

c.	 In	the	Format	area,	set	these	options:
 Format (none)

 Path No
 Filename Yes

 File extension Yes

5.	 Click	OK.	Notice	that	BricsCAD	adds	the	file	name	field.	It	may	appear	as	“Drawing1,”	or	whatever	the	file	

name	of	the	your	drawing	is.	You	can	tell	that	it	is	field	text,	because	of	the	gray	background.

6.	 Exit	the	mtext	editor	by	clicking	OK.

7.	 To	see	field	text	in	action,	now	save	the	drawing	to	change	its	name:

a.	 Enter	the	SaveAs	command.

b.	 In	the	Save	Drawing	As	dialog	box,	enter	a	file	name	like	“Field	text	example.”

c.	 Click	Save.

Notice	that	the	field	text	changes	to	reflect	the	new	file	name.

FIELDS IN ATTRIBUTES
Field text can be made part of an attribute definition. Recall that attributes are used to add custom
data to blocks. As shown by the following tutorial, this is done with the AttDef command, which is
normally used to define attributes.

In this tutorial, you create an attribute that reports the current zoom level of the drawing.

1.		 Start	the	AttDef command.	Notice	the	Attribute	Definition	dialog	box.	

2.	 In	the	Attribute	section,	fill	in	the	attribute	text	fields	—	Tag,	Prompt,	and	Default	fiels.	YT;	you	can	use	the	

figure	below	as	an	example	of	the	text	to	use:

 19 Coding with Field Text 339

3.	 To	add	a	field	to	the	attribute,	click	the	 	Insert Field	button	next	to	the	Default	field.	Notice	that	BricsCAD	

displays	the	usual	Field	dialog	box,	as	shown	below.	

4.	 Select	a	system	variable	like	this:

a.	 From	the	Fields	Name	list,	open	the	Variables	node.

Choosing the SystemVariable field name

b.	 Select	SystemVariable.

c.	 Under	the	list	of	System	Variables,	scroll	right	to	the	end	and	then	pick	ZoomFactor.		

d.	 It	has	no	format	options,	so	click	OK.

5.	 Click	OK	to	close	the	Field	dialog	box.

	 Back	in	the	Attribute	Definition	dialog	box,	notice	that	the	field	text	shows	in	the	Default	box	with	a	gray	

background.	

6.	 Click	OK	to	close	the	dialog	box.	All	you	see	in	the	drawing	is	ZOOMVALUE.

340 Customizing BricsCAD V19

7.	 To	see	the	field	text,	you	need	to	turn	the	attribute	into	a	block	and	then	insert	the	block.	Follow	these	steps:

a.	 Start	the	Block	command.

b.	 Enter	the	following	parameters:

	 	 Name	 	 zoomvalue

	 	 Base Point	 Click	 	Pick Point,	and	then	pick	the	lower	right	corner	to	ZOOMVALUE;		

	 	 	 use	the	INSertion	point	entity	snap	to	assist	you

 Using Insertion entity snap to locate the insertion point of the text

	 	 Entities	 	 Click	 	Select Entities,	and	then	choose	the	text

	 	 Convert to Block	 Yes

Users	should	not	be	allowed	to	modify	fields,	so	turn	on	the	Constant setting	found	in	the	Mode	section	in	
the	AttDef	dialog	box.	

c.	 Click	OK.

d.	 When	the	Edit	Attributes	dialog	box	appears,	click	Cancel;	you	don’t	need	its	services.

8.	 Zoom	in	and	out.	The	zoom	factor	value	does	not	change.	To	update	the	field	takes	two	steps	this	time.	

a.	 First,	change	the	value	of	the	zoom	factor	using	the	related	varaiable:
 : zoomfactor
 New current value for ZOOMFACTOR (3 to 100) <60>: 5

b.	 The	field	text	still	does	not	change	(I’ll	explain	later	why	this	is),	so	enter	the	Regen	command	to	see	the	

value	of	the	field	updated.
 : regen

 19 Coding with Field Text 341

Changing Field Text

To change field text, simply double-click it; BricsCAD displays the Field dialog box. Use it to make
changes. Alternatively, you can change field values by using the Properties palette. Here, we look
at both approaches.

DOUBLE-CLICKING FIELDS IN MTEXT
To edit fields placed by the MText command, you use this procedure.

1.	 Double-click	the	field	text.	Notice	that	BricsCAD	displays	the	mtext	editor.

2.	 Click	the	field	text.	Notice	that	its	background	color	changes	to	blue.	

3.	 Now	double-click	the	blue,	and	notice	that	the	Field	dialog	box	appears.	(Alternatively,	you	can	right-click	

field	text	to	access	the	following	shortcut	menu.)

Here’s	what	the	the	three	field-related	options	mean	on	the	shortcut	menu:

	 Edit Field	—	displays	the	Field	dialog	box.

	 Update Field — forces	an	update	the	field’s	value.

	 Convert Field to Text — turns	the	field	into	normal	text,	freezing	the	value	of	the	field.

4.	 Select	a	different	field	type,	or	change	the	field	formatting.

5.	 Click	OK	to	close	the	dialog	box,	and	then	click	OK to	exit	the	mtext	editor.

So the background to field text changes color, depending on its editing state:

	 	 Gray	=	field	text	in	unedited	state

	 	 Blue	=	field	text	ready	for	editing	

342 Customizing BricsCAD V19

EDITING FIELDS IN ATTRIBUTE DEFINITIONS
When field text is in an attribute definition, you can edit it, as follows:

1.	 Double-click	the	attribute	text.	BricsCAD	displays	the	Attribute	Editor	dialog	box.	(The	EAttEdit	command	

was	executed.)

2.	 In	the	dialog	box’s	Default	field,	double-click	the	gray	field	text.	Alternatively,	you	can	right-click	the	field	text	

itself	to	access	this	shortcut	menu:	

3.	 Notice	 the	 Field	 dialog	 box.	 Make	 your	 changes,	 and	 then	 click	OK to	 exit	 the	 dialog	 boxes.

Controlling the Way Fields Update

The point to using field text is that it can update values — manually or automatically. You force an
update with the UpdateField command, or else specify when automatic updates take place with
the FieldEval system variable.

UPDATEFIELD COMMAND
To update selected fields manually, use the UpdateField command. It asks you to select one or
more fields, and then update their values.
: updatefield
Select field(s) to update: (Press Ctrl+A, or select individual fields)
Select field(s) to update: (Press Enter to end object selection)
<n field(s) found, n field(s) updated>

To update all fields in the drawing, press Ctrl+A at the ‘Select fields’ prompt.

 19 Coding with Field Text 343

FIELDEVAL COMMAND
Earlier, you used the Regen command to force the value of a field to update. This was an application
of an automatic update that was dictated by the FieldEval sysvar. It wasn’t the Regen command
itself that did the updating; rather the command triggered BricsCAD to also update all fields in the
drawing.

Fields are updated by BricsCAD when one of the following trigger events occur:

Open	—	when	the	drawing	file	is	opened

Save	—	after		the	drawing	file	is	saved,	as	you	saw	above	with	the	CreateDate	field

Plot	—	before	the	drawing	is	plotted

eTransmit	—	as	the	drawing	is	being	prepared	for	packaging	with	the	eTransmit	command

Regen	—	when	the	drawing	is	regenerated	(reloaded	from	the	.dwg	file)

These events are controlled with the FieldEval system variable, which is best accessed through the
Settings dialog box:

If you choose the access the system variable at the command line, it looks like this:
: fieldeval
New current value for FIELDEVAL (0 to 31) <31>: (Enter a number)

The value takes one or more of these values:

FieldEval Comments

0 Fields are not updated automatically; use the UpdateField command
1 Open command
2 Save command
4 Plot command
8 eTransmit command
16 Regen command

The default is 31, the sum of 1+2+4+8+16 — all options are turned on, except for 0.

344 Customizing BricsCAD V19

FIELDDISPLAY COMMAND
The FieldDisplay system variable determines whether field text displays that gray rectangular
background or not:
: fielddisplay
New current value for FIELDDISPLAY [1 for on (ON)/0 for off (OF): (Enter OFf or On)

I say, leave it on all the time, because (a) its purpose is to lets you distinguish between field and
regular text, and (b) the gray background is never plotted, anyhow.

FieldDisplay Comments

0 Fields don’t display the gray rectangular background
1 They do

Another Field Text Example

In the following tutorial, you get field text to report the area of a rectangle.

1.	 Start	BricsCAD,	and	then	use	the	Rectang command	to	draw	a	rectangle	of	any	size.

2.	 Use	the	Field command	to	create	the	field	code	for	the	area	of	the	rectangle.	Select	the	following	options:

Field Option Value

 Field Category Objects
 Field Names Object
 Object Type (Click Select Object button, and then select the rectangle.) Polyline
 Property Area
 Format Architectural
 Precision 0 .00

 19 Coding with Field Text 345

TIP	 The	field	text	is	linked	automatically	to	the	rectangle	through	the	Select Object	button.

3.	 Click	OK	to	exit	the	dialog	box.

4.	 BricsCAD	switches	to	mtext-like	prompts:
 MTEXT Current style: “Standard” Text height: 2.5
 Specify start point or [Height/Justify]: (Pick a point inside the rectangle)

The field text is placed in the drawing. Notice that the units are shown as “SQ. FT.” — square feet.

Updating the Field Text
With the field text reporting the area of the rectangle, you can go ahead and change the size of the
rectangle to see how the field updates.

1.	 Select	the	rectangle,	and	then	use	the	grips	to	change	the	size	of	the	rectangle.

2.	 Enter	the	Regen command	to	update	the	field	text.

Notice that the field text changes to reflect the new area.

TIP It	is	important	to	remember	that	field	text	is	tied	to	specific	objects.	If	you	erase	the	rectangle	
and	then	use	the	UpdateField	command,	the	field	text	will	read	########	because	it	no	longer	has	a	valid	
meaning,	because	its	related	object	is	gone.

346 Customizing BricsCAD V19

Understanding Field Codes

Field text uses a coding system that is not documented by neither Autodesk nor Bricsys. A typical
field code looks like this:
%<\AcVar Filename \f “%tc4%fn7”>%

(Parts of the code that never change are shown in blue.) Generally there are two pairs in a code,
one set before the \f, and another after:

•	 Before	the	\f	is	the	type of	field

•	 After	the	\f	is	the	format of	the	field	

I figure that \f is short for “format.” In the drawing, the code listed above gives the file name in a
field, like Drawing1.dwg.

Let’s parse the field code to see what it means:
 %< Start of field code
 \AcVar AutoCAD variable
 Filename Name of the variable

 \f " Start of format code(s)
 %tc4 Text capitalization using format #4
 %fn7 File name using format #7
 " End of format codes

 >% End of field code.

%< Signals the start of a field code, just as’ ‘(’ tells BricsCAD that LISP code is starting, and ‘$(’ indicates the start
 of Diesel code .
\ Backslash Indicates that a metaword follows . In this case, \AcVar refers to “AutoCAD variable,” and that the
 following word will be the name of a variable — Filename, in this case .

\f Specifies that one or more format codes are to follow.
" " Quotation marks delimit format codes; format codes are always held within the quotation marks .
% Percent Indicates the start of a format code .
 • The first code, %tc, specifies the text capitalization . The value of 4 means that the text of the file
 name is shown in title case, meaning the first letter of each word is capitalized.
 • The second format code, %fn7, specifies how much of the file name is displayed; a value of 7 means
 that the path, file name, and file extension are all displayed.

>% Signals the end of the field code.

Here is another example of a field code. This one shows the properties of an object, a circle:
 %<\AcObjProp Object(%<_ObjId 2126544536>%).Center \f “%lu2%pt3”>%

let’s pick it apart
 %< Start of field code
 \AcObjProp Metatext for AutoCAD object properties
 Object(%<_ObjId 2126544536>%) Object identified by number
 . (Dot) Start of property
 Center Property: center coordinates of circle
 \f Metatext for format code
 " Start of format code
 %lu2 Linear units style #2, decimal
 %pt3 Points style #3, x,y coordinates
 " End of format code
 >% End of field code

 19 Coding with Field Text 347

Complete Field Code Reference

GROUPS
Fields belong to groups. All of them are found in one of the following group names:

Field Group Group Name

Objects and named objects AcObjProp objectId
System variables AcVar varName
Diesel code AcDiesel code

METAWORDS
Fields use meta-words to allow additional information, such as a hyperlink or units. Meta-words
are identified by the backslash (\) prefix. The backslash is followed by text that is surrounded by
quotation marks ("). Here are a few examples:

Meta-word Meaning MetaWord

Hyperlink address follows \ \href "hyperlinkReference"
Formatting codes follow \ \f "formatCodes"
Inches units follows \ \"

FORMATTING
The text displayed by fields is formatted using the following format codes:

Formatting Format Code

Decimal (.) places % .
Angular Units %au
Bytes (filesize) %by
Convert %ct
Decimal Separator %ds
File Name, path, and extension %fn
Linear Units %lu
Line Weight units %lw
Precision %pr
Points (x,y,z) %pt
Scale Factor %qf
Text Case %tc
Hexadecimal conversion %X

COMPATIBILITY WITH AUTOCAD FIELD CODES

In general, field codes generated by BricsCAD are compatible with those from AutoCAD. The primary difference is that
BricsCAD tends to have fewer entities and fewer codes for some entities. In addition, when you paste literal field codes
into a drawing, BricsCAD interprets them as a script; in AutoCAD, they are pasted as field text.

When you open a drawing from AutoCAD in BricsCAD containing unsupported field codes (such as for mlines),
BricsCAD displays them correctly as field text, but cannot edit them.

348 Customizing BricsCAD V19

Some notes on format codes:

 %X forces	numbers	to	be	displayed	in	hexadecimal	notation	(base	16)		

 %ld	is	a	code	used	by	file	sizes;	I	haven’t	figured	out,	but	it	seems	to	have	no	effect	

 %qf	is	used	by	scale	factors,	but	employs	values	I	haven’t	figured	out	yet

I have found that some codes use the same naming system as related variables. For example, %lu
(linear units) uses the same values as the LUnits system variable, such as 1 = scientific units and
2 = decimal units.

COMPLETE FORMAT CODE REFERENCE
Here is a summary of all of the format codes employed by fields.

%tcn — Text Case
Specifies how to display the case of text.
Meaning Code

No formatting blank
UPPERCASE %tc1
lowercase %tc2
First capital %tc3
Title Case %tc4

%lun — Linear Units
Specifies how to display linear units. Values match those of the LUnits system variable. Decimal
units can use decimal separators; see %ds below.
Meaning Code

No formatting blank
Scientific %lu1
Decimal * %lu2
Engineering units %lu3
Architectural units %lu4
Fractional units %lu5
Current Units %lu6

%dsn — Decimal Separator
Decimal separators specify the character that separates thousands in decimal units (%lu2). Bric-
sCAD uses standard ASCII codes between 31 and 127 for specifying decimal separators. For the
meaning of ASCII codes, consult an ASCII table such as at http://www.asciitable.com. These are
just a few examples.
Meaning Code Notes

Space separator %ds32
Comma (,) separator %ds44 Used in North America
Decimal (.) separator %ds46 Used in European countries
Angle (<) separator %ds60
Letter A separator %ds65

 19 Coding with Field Text 349

%aun — Angular Units
Specifies how angular units are displayed, and matches the values used by the AUnits variable.
Meaning Code

No formatting blank
Decimal degrees %au0
Deg/min/sec %au1
Grads %au2
Radians %au3
Surveyor’s Units %au4
Current units %au5

%lwn — Line Weight units
Specifies the units by which to display lineweights; similar to LwUnits system variable.
Meaning Code

Millimeters %lw1
Inches %lw2

%qfn — scale Factor
Specifies scale factor for plot and viewport scales.
Meaning Code

Viewport custom scale %qf1
Plot scale %qf2816

%ctn — ConverT
Specifies how plot scales and areas are displayed:
Plot and Viewport Scales Code Notes
No scale blank
#:1 %ct0 #
1:# %ct1 1/#
#”=1'0" %ct2 12*#

Area Scales Code Notes
Square feet %ct3 #
Square inches %ct4 12*#

%ptn — PointTs (xyz coordinates)
Specifies which coordinates to display; default displays all three (x, y, and z).
Meaning Code

X, Y and Z none
X only %pt1
Y only %pt2
Z only %pt4
X and Y %pt3
X and Z %pt5
Y and Z %pt6

350 Customizing BricsCAD V19

%.n — decimal places
Specifies number of decimal places displayed by real numbers:
Meaning Code

8 %.8
7 %.7
6 %.6
5 %.5
4 %.4
3 %.3
2 %.2
1 %.1
0 %.0

%prn — display PRecision
Specifies fractional precision or number of decimal places displayed, in a manner similar to the
LuPrec system variable. Note that under some conditions, %pr7 and %pr8 display at most 1/64
precision.
Fractions Decimal Places Code

1/256 8 %pr8 *

1/128 7 %pr7 *

1/64 6 %pr6
1/32 5 %pr5
1/16 4 %pr4
1/8 3 %pr3
1/4 2 %pr2
1/2 1 %pr1
1 0 %pr0

%FNN — FILE NAMES
Specifies how much of the file name to display.
Meaning Code

No file name, path only %fn1
File name only, without extension %fn2
File name and path, without extension %fn3
File name with extension %fn6
File name with extension and path %fn7

%BYN — BYTES (FILE SIZE)
Specifies the format in which to display file sizes.
Meaning Code

Bytes %by1
Kilobytes %by2
Megabytes %by3

 19 Coding with Field Text 351

HREF - HYPERLINKS
Specifies the format of hyperlinks.
Meaning Code

\href Indicates that a hyperlink address follows
#, (Optional) Target
(Optional) Text to display
#0 Indicates end of hyperlink address

DATE & TIME FORMAT CODES
Format Field Codes Examples

Year, Month, Day, Hour, Minute Seconds, and AM/PM

Month M 8 (also 10, 11, 12)
 MM 08
 MMM Aug
 MMMM August

Day d 3 (also 31)
 dd 03 (also 31)
 dddd Sunday

Year yy 04
 yyyy 2004

Hour h 4 (also 12)
 hh 04 (also 12)

Minute m 5 (also 59)
 mm 05 (also 59)

Second s 2 (also 59)
 ss 02 (also 59)

am or pm tt AM, PM (leave out for 24-hour clock)

Regional long date %#x Saturday, July 31, 2004
Regional long date and time %#c Saturday, July 31, 2004 7:45:19 PM
Regional short date %x 7/31/2004
Regional date and time %c 7/31/2004 7:45:19 PM
Regional time %XX 7:45:19 PM

Format Field Codes Examples

Alternative Day, Date, Month, Year, time, and AM/PM

Date D 1
Date with zero prefix DD 01
Abbreviated day name DDD Sat.
Full day name DDDD Saturday
Month M 3
Month with zero prefix MO 03
Abbreviated month name MON Mar.
Full month name MONTH March
Abbreviated year YY 04
Full year YYYY 2004

Hour H 9
Hour with zero prefix HH 09
Minutes with zero prefix MM 03
Seconds with zero prefix SS 08
Millisecond (1/1000 of a sec) MSEC 257
Displays AM or PM AM/PM AM
Displays am or pm am/pm am
Displays A or P A/P A
Displays a or p a/p a

352 Customizing BricsCAD V19

QUICK SUMMARY OF FIELD DATE AND TIME CODES

The date and time are formatted by the codes listed below; this list is more complete than the one provided by Bricsys.

Letters not used for codes are treated literally, such as c and Q. You can use characters as separators, such as / - and ,. The
number of characters sometimes affects the date and time displayed: one or two “d”s display the date of the month, while
three or four display the day of the week. Some codes are case-sensitive: uppercase M means month, while lowercase m
means minute. “System Time” means the date and time as formatted specified by Windows.

Format Comment Example

Months (must use uppercase M)
M Number of month . 3 (March)
MM Number with zero prefix. 03
MMM Three-letter abbreviation . Mar
MMMM Full month name . March

Dates
d Date of the month . 6
dd Date, with zero prefix. 06

Days
ddd Abbreviated day of the week . Fri
dddd Full day name . Friday

Years (must use lowercase y)
y Single digit year . 6 (2006)
yy Two-digit year . 06
yyy or yyyy Four-digit year . 2006

Hours
h 12-hour clock . 5
hh Hour with zero prefix. 05
t Single-character AM or PM . A
tt Placeholder for AM or PM . AM
H 24-hour clock . 17
HH 24-hour with zero prefix. 07

Minutes (must use lowercase m)
m Minutes . 9
mm Minutes with zero prefix. 09

Seconds
s Seconds . 8
ss Seconds with zero prefix. 08

Examples of System Time (case sensitive)
%c Date and time in short format . 6/21/05 4:18:06 PM
%#c Date and time . Friday, June 21, 2005 4:18:06 PM
%X Time . 4:18:06 PM
%x Date in short format . 6/21/05
%#x Date in long format . Friday, June 21, 2005

 19 Coding with Field Text 353

Objects and Property Names

In general, objects employ the following field text coding:
 %<\AcObjProp Object(%<_ObjId idNumber>%).property [\f “format”]>%

 idNumber identifies	the	object	

	 property	describes	the	object’s	property;	named	objects	are	similar,	but	are	restricted	to	the .property	prop-

erty	

 format is	optional,	and	formats	the	property

Here is an example with formatting:
 %<\AcObjProp Object(%<_ObjId 2130015880>%).LinetypeScale \f “%tc1”>%=

And without formatting:
 %<\AcObjProp Object(%<_ObjId 2130015880>%).LinetypeScale>%

TIP Thanks	to	www.cadforum.cz	for	identifying	that	%X is	the code	for	hex	format.

PROPERTIES IN COMMON
Here are the properties common to all entities:
Property Name Field Code Formatting

Color TrueColor Text
Layer Layer Text
Linetype Linetype Text
Linetype Scale LinetypeScale Linear units
Lineweight Lineweight Measurement

Material Material Text
Object Name ObjectName Text
Plot Style PlotStyleName Text
Position Coordinates Linear units
Slope Slope Angular units
Thickness Thickness Linear units
Transparency EntityTransparency Text
UCS Elevation UCSElevation Text

OBJECT PROPERTIES
Most entities have a few (or many!) properties,but some have no additional properties. Here is a list
of entities and field properties unique to them (i.e. excluding the common properties listed above).

Arcs
Property Name Field Code Formatting

Arc Length ArcLength Linear units
Area Area Linear units
Center Center Linear units & XYZ
End EndPoint Linear units & XYZ
End Angle EndAngle Angular units
Normal Normal Linear units & XYZ
Radius Radius Linear units
Start StartPoint Linear units & XYZ
Start Angle StartAngle Angular units
Total Angle TotalAngle Angular units

354 Customizing BricsCAD V19

Attribute Definition
Single-line text properties, plus these:
Property Name Field Code Formatting

Constant Constant Text
Invisible Invisible Text
Lock Position LockPosition Text
Preset Preset Text
Prompt PromptString Text
Tag TagString Text
Verify Verify Text

Associative Dimensions
Field Name Field Code Formatting

Associative Associative Text

Blocks, Block Placeholders, and External References
Property Name Field Code Formatting

Block Unit InsUnits Units
Name Name Text
Position InsertionPoint Linear units & XYZ
Prompt 1 TextString Text
Rotation Rotation Angular units
Scale X XScaleFactor Linear units
Scale Y YScaleFactor Linear units
Scale Z ZScaleFactor Linear units
Unit Factor Unit Factor Linear units

1 Found in blocks with attributes.

Circles
Property Name Field Code Formatting

Area Area Linear units
Center Center Linear units and XYZ
Circumference Circumference Linear units
Diameter Diameter Linear units
Normal Normal Linear units and XYZ
Radius Radius Linear units

Ellipses
Property Name Field Code Formatting

 Area Area Linear units
 Center Center Linear units & XYZ

End EndPoint Linear units & XYZ
End Angle EndAngle Angular units
End Point EndPoint Linear units
Major Axis Vector MajorAxis Linear units & XYZ
Major Radius MajorRadius Linear units
Minor Axis Vector MinorAxis Linear units & XYZ
Minor Radius MinorRadius Linear units
Radius Ratio RadiusRatio Linear units
Start Point StartPoint Linear units & XYZ
Start Angle StartAngle Angular units

 19 Coding with Field Text 355

Hatches
Property Name Field Code Formatting

Angle Angle Angular units
Area Area Linear units
Associative AssociativeHatch Text
Double PatternDouble Text
Elevation Elevation Linear units
Island Detection Style HatchStyle Text
Origin Point Origin Linear units
Pattern Name PatternName Text
Scale PatternScale Linear units
Spacing PatternSpace Linear units
Type PatternType Text

Leaders
No additional properties

Lines
Property Name Field Code Formatting

Angle Angle Angular units
Delta Delta Angular units & XYZ
End Point EndPoint Angular units & XYZ
Length Length Linear units
Start Point StartPoint Angular units & XYZ

Mtext
Property Name Field Code Formatting

Contents TextString Text
Direction DrawingDirection none
Height Height Linear units
Line Space Factor LineSpacingFactor Linear units
Line Space Style LineSpacingStyle Text
Position InsertionPoint Linear units & XYZ
Rotation Rotation Angular units
Style StyleName Text
Width Width Linear units

OLE (object linking and embedding) objects
No additional properties

Polylines
Polylines include donuts, rectangles, polygons, revclouds, and certain ellipses.
Property Name Field Code Formatting

Area Area Area units
Closed Closed none
Elevation Elevation Linear units
Global Width ConstantWidth Linear units
Length Length Linear units
Linetype Generation LinetypeGeneration none

356 Customizing BricsCAD V19

Polygon Meshes
Property Name Field Code Formatting

M Closed MClose Text
M Density MDensity none
M Vertex Count MVertexCount none
N Closed NClose Text
N Density NDensity none
N Vertex Count NVertexCount none

Polyface Meshes
No additional properties

Raster Images
Property Name Field Code Formatting

Name Image name Text
Position Insertion Point Linear units
Rotation Rotation Angular units
Width ImageWidth Linear units

Regions
Property Name Field Code Formatting

Area Area Area units
Perimeter Perimeter Linear units

Rays and Xlines
Property Name Field Code Formatting

Basepoint BasePoint Linear units & XYZ
Direction Vector DirectionVector Linear units & XYZ
Second Point SecondPoint Linear units & XYZ

Shapes
Property Name Field Code Formatting

Name Name Text
Obliquing ObliqueAngle Angular units
Position InsertionPoint Linear units & XYZ
Rotation Rotation Angular units
Size Height Linear units
Width Factor ScaleFactor Linear units

Single-line Text
Property Name Field Code Formatting

Backward Backward Text
Contents TextString Text
Height Height Linear units
Justify Alignment Text
Obliquing ObliqueAngle Angular units
Position InsertionPoint Linear units & XYZ
Rotation Rotation Angular units
Style StyleName Text
Text Alignment TextAlignmentPoint Linear units & XYZ
Upside Down UpsideDown Text
Width Factor ScaleFactor Linear units

 19 Coding with Field Text 357

Splines
Property Name Field Code Formatting

Area Area Area units
Closed Closed none
Control Points NumberOfControlPoints none
Degree Degree none
End Tangent EndTangent Linear units & XYZ
Fit Tolerance FitTolerance Linear units
Fit Points NumberOfFitPoints none
Planar Planar none
Start Tangent StartTangent Linear units

Tables
Property Name Field Code Formatting

Columns Columns none
Direction FlowDirection none
Height Height Linear units
Horizontal cell margin HorzCellMargin Linear units
Position InsertionPoint Linear units & XYZ
Rows Rows none
Style StyleName Text
Width Width Linear units

Tolerances
Property Name Field Code Formatting

Position InsertionPoint Linear units & XYZ
Text Height Text Height Linear units

Viewports
Property Name Field Code Formatting

Center Center Linear units & XYZ
Height Height Linear units
Width Width Linear units

3D Faces
No additional properties

3D Polylines
Property Name Field Code Formatting

Closed Closed Text
Fit/Smooth Type Text
Length Length Linear units

3D Solids
Property Name Field Code Formatting

Area Area Linear units
Centroid Centroid Linear units, XYZ
Gyration Radii GyrationRadiii Linear units, XYZ
Moments of Inertia MomentsOfInertia Linear units, XYZ
Product of Inertia XY ProductOfInertiaXY Linear units
Product of Inertia XZ ProductOfInertiaXZ Linear units
Product of Inertia YZ ProductOfInertiaYZ Linear units
Volume Volume Linear units

358 Customizing BricsCAD V19

Sheet SetS
Property Name Field Code Formatting

CurrentSheetCategory Sheet.Category Text
CurrentSheetCustom Sheet. Text
CurrentSheetDescription Sheet.Description Text
CurrentSheetIssuePurpose Sheet.IssuePurpose Text
CurrentSheetNumber Sheet.Number Text
CurrentSheetNumberAndTitle Sheet.NumberAndTitle Text
CurrentSheetRevisionDate Sheet.RevisionDate Text
CurrentSheetRevisionNumber Sheet.RevisionNumber Text

CurrentSheetSet SheetSet.Name Text
CurrentSheetSetCustom SheetSet. Text
CurrentSheetSetDescription SheetSet.Description Text

CurrentSheetProjectMilestone SheetSet.ProjectMilestone Text
CurrentSheetProjectName SheetSet.ProjectName Text
CurrentSheetProjectNumber SheetSet.ProjectNumber Text
CurrentSheetProjectPhase SheetSet.ProjectPhase Text

CurrentSheetSetCount SheetSet.SheetCount Text
CurrentSheetSubSet Subset.Name Text
CurrentSheetSetSubSheetCount Subset.SheetCount Text
CurrentSheetTitle Sheet.Title Text

NAMED OBJECT PROPERTIES
Named objects are entities that have names or style names: you access them by name. The entities
that fall into this category are as follows:

•	 Layer	names

•	 Linetype	names

•	 View	names

•	 Dimension	styles

•	 Text	styles

•	 Table	styles

As of writing, you can only access the names related to each named object.

Programming BricsCAD
PART III

Notes

Writing Scripts

BricsCAD’s clearest programming possibility is the script. In this chapter, you learn how to
write scripts, and how to use its built-in script recording feature.

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Understanding scripts

• Learning about drawbacks to scripts

• Employing script commands and modifiers

• Using special characters.

• Recording scripts

CHAPTER 20

362 Customizing BricsCAD V19

What are Scripts?

Scripts mimic what you type at the keyboard. Anything you type at the ‘:’ command prompt can
be put in a script file. That includes BricsCAD commands, their options, your responses, and —
significantly— LISP code.

Mouse actions, however, cannot be included in script files, such as selecting dialog box and toolbar
buttons. Scripts are strictly keyboard-oriented.

The purpose of scripts is to reduce the number of keystrokes you type. By placing the keystrokes
and coordinate picks in a file, the file reruns your previously-entered commands. (Think of scripts
as a predecessor to macros.)

A script file that draws a line and a circle might look like this:
 line 1,1 2,2
 circle 2,2 1

In this script, the Line command starts, and then is given two sets of x,y coordinates, (1,1) and
(2,2). The Circle command starts, and is given a center point (2,2) and a radius (1). Hidden are the
extra space at the end of each line, which are like pressing the Spacebar to end a command. In this
chapter, I show hidden spaces with this character: ▄ .

Scripts are stored in files that have the .scr extension. Script files consist of plain ASCII text format.
For this reason, do not use a word processor, such as Libre Office. Instead, to write scripts use a
text editor, such as Notepad in Windows, Text Edit in Linux, or TextEdit in Mac.

You can use the BricsCAD script creation command RecScript (short for “record script”) to record
your scripts. Or you can enter the command text directly into an .scr file: when I feel like a DOS
power user, I’ll write the script in the Windows command prompt (press Windows+R, and then
enter the Cmd command):
C:\> copy con filename.scr
;This is the script file
line▄1,1▄2,2▄
circle▄2,2▄1▄

When I’m done, I press Ctrl+Z to tell the operating system that I’ve finished editing, and to close
the file.

 20 Writing Scripts 363

DRAWBACKS TO SCRIPTS

A limitation to scripts is that just one script file can be loaded into BricsCAD at a time. A script file
can, however, call another script file. Or, you can use some other customization facility to load ad-
ditional script files, such as with toolboxes, menu macros, and LISP routines.

Another limitation is that scripts stall when they encounter invalid command syntax. I sometimes
have to go through the code-debug cycle a few times to get the script correct.

It is useful to have an BricsCAD reference text on hand that lists all command names and their options.

Strictly Command-Line Oriented
Another limitations is significant in this age of GUIs (graphical user interfaces): scripts cannot
control mouse movements nor actions in dialog boxes. This is a reason that nearly all commands
that display dialog boxes also have a command-line equivalent. But different commands handle
this differently:

•	 Some	commands	have	different	names.	For	example,	to	control	layers,	there	is	the	Layer for	the	dialog	box	

and	-Layer	for	the	command	line.	If	the	script	needs	to	create	or	change	a	layer,	use	the	-Layer command,	or	

better	yet	the	CLayer system	variable,	as	follows:
 ; Change layer:
 clayer▄layername▄

•	 Some	commands	need	system	variable	FileDia turned	off.	This	forces	commands	that	display	the	Open File

and	Save File	dialog	boxes	—	such	as	Open,	Script,	and	VSlide —	to	prompt	for	filenames	at	the	command	

line.	Thus,	script	files	should	include	the	following	lines	to	turn	off	file	dialog	boxes:
 ; Turn off dialog boxes:
 filedia▄0▄

 ; Load slide file:
 vslide▄filename▄

•	 When	FileDia is	turned	off,	use	the	~	(tilde)	as	a	filename	prefix	to	force	the	display	of	the	dialog	box.	For	

example:
 : script
 Script to run: ~ (BricsCAD displays Run Script dialog box.)

•	 Some	commands	have	no	command-line	equivalent,	such	as	the	Plot command.	Instead,	when	this	command	

is	used	in	a	script,	the	command-line	version	appears	automatically.

•	 While	BricsCAD	accepts	command	aliases	with	-	(hyphen)	prefixes	to	force	the	command-line	version	of	com-

mands,	it	lacks	the	hyphen-commands	found	in	AutoCAD.	

364 Customizing BricsCAD V19

Recording with RecScript

The RecScript command records keystrokes, and then saves them to an .scr script file.

The StopScript command tells BricsCAD to stop recording.

The Script command plays back the script.

Let’s see how this works. Record a script for darwing a rectangular border sized 24x26 units:

1.	 In	a	new	drawing,	start	the	RecScript	command.	(Alternatively,	from	the	Tools	menu	select	Record Script.)	

Notice	the	Record	Script	dialog	box.

Starting to record a script by giving it a file name

2.	 Enter	a	file	name	for	the	script.	It	can	be	any	name	that	will	remind	you	of	the	script’s	function,	and	can	be	up	

to	255	characters	long.	For	this	tutorial,	enter	border,	and	then	click	Save.

3.	 Notice	that	the	dialog	box	goes	away,	and	that	BricsCAD	appears	to	be	doing	nothing.	In	fact,	it	is	waiting	for	

you	to	enter	commands.	Enter	the	commands	and	options	shown	in	boldface:
: rectang
Chamfer/Elevation/Fillet/Rotated/Square/Thickness/Width/Area/Dimensions/<Select first cor-
ner of rectangle>: 0,0
Other corner of rectangle: 36,24

: zoom
Zoom: In/Out/All/Center/Dynamic/Extents/Left/Previous/Right/Scale/Window/<Scale (nX/
nXP)>: e

4.	 When	done,	enter	the	StopScript	command	to	signal	BricsCAD	that	you	are	done:
 : stopscript

5.		 Now	run	the	script	with	the	Script	command,	as	follows:

a.	 Start	a	new	drawing	with	the	New	command,	so	that	you	can	see	the	effect	of	the	script.

b.		 Enter	the	Script	command.

c.		 Notice	the	Run	Script	dialog	box.	Choose	border.scr,	and	then	click	Open.

	 Notice	that	the	script	instantly	draws	the	rectangle,	and	then	zooms	the	drawing	to	the	extents	of	the	newly-

drawn	border.	Indeed,	it	may	occur	so	fast	that	you	don’t	notice	it!

TIP	 You	can	use	the	mouse	to	pick	points	in	the	drawing	during	commands	that	are	being	recorded	

by	the	RecScript	command.	BricsCAD	records	the	pick	points	as	x,y	coordinates.	

 20 Writing Scripts 365

Writing Scripts by Hand

While BricsCAD has commands for creating and running scripts, it has not command for editing
them. If you want to change the coordinates used by the Rectang command, you have to edit the
script file with Notepad in Windows, Text Edit in Linux, or TextEdit in Mac.

Here is how it works:

1.	 Open	the	border.scr file	in	the	text	editor.	

TIP	 If		you	are	not	sure	where	the	border.scr file	is	located	on	your	computer,	here	is	a	quick	way	to	
find	and	open	it	in	Windows:	start	the	Script	command,	and	then	in	the	dialog	box	right-click	the	.src	file.	
From	the	shortcut	menu,	select	Open.	Notice	that	the	file	opens	in	Notepad.

	 Notice	the	commands	and	options	that	you	entered	during	the	script	recording	session:

Entering a script in a text editor

2.	 Let’s	change	the	size	of	the	border	to	18x24.	Edit	the	“36,24”	text,	replacing	it	with...
 18,24

3.	 Let’s	also	add	the	command	for	placing	the	rectangle	on	a	layer	named	“Border”	and	colored	blue:

a.	 Place	the	cursor	in	front	of	“rectang,”	and	then	press	Enter	to	make	an	empty	line.

b.	 Enter	the	following	text:
 -layer
 make
 border
 color
 red
 ▄ <-- One blank line
 ▄ <-- A second blank line

c.	 Make	sure	you	include	two	blank	lines;	these	act	like	pressing	Enter	during	commands.	The	file	should	

look	like	this	now:

366 Customizing BricsCAD V19

4.	 Save	the	file	with	the	File | Save command.

5.	 Return	to	BricsCAD,	and	then	start	a	new	drawing.

6.	 Use	the	Script	command	to	test	that	the border.scr	file	is	operating	correctly.	You	should	see	a	red	rectangle.

Border drawn by the script

Script Commands and Modifiers

There are a grand total of four commands that relate specifically to scripts. In fact, these commands
are of absolutely no use for any other purpose. In addition, BricsCAD has the RecScript command
for recording scripts, as described earlier in this chapter.

In rough order of importance, the four basic commands are:

SCRIPT

The Script command performs double-duty: (1) it loads a script file; and (2) immediately begins
running it. Use it like this:
: script
Script to run: filename

Remember to turn off (set to 0) the FileDia system variable so that the prompts appear at the
command line, instead of the dialog box.

RSCRIPT

Short for “repeat script,” this command reruns whatever script is currently loaded in BricsCAD. A
great way to create infinite loops. There are no options:
: rscript

 20 Writing Scripts 367

RESUME

This command resumes a paused script file. Pause a script file by pressing the Backspace key.
Again, no options:
: resume

DELAY

To create a pause in a script file without human intervention, use the Delay command along with
a number. The number specifies the pause in milliseconds, where 1,000 milliseconds equal one
second. The minimum delay is 1 millisecond; the maximum is 32767 milliseconds, which is just
under 33 seconds.

While you could use Delay at the ‘:’ prompt, that makes little sense; instead, Delay is used in a
script file to wait while a slide file is displayed or to slow down the script file enough for humans
to watch the process, like this:
; Pause script for ten seconds:
delay 10000

SPECIAL CHARACTERS

In addition to the script-specific commands, there are some special characters and keys.

Enter - (space)
The most important special characters are invisible: both the space and the carriage return (or
end-of-line) are the equivelant to when you press the spacebar or Enter keys. In fact, both are
interchangeable. But the tricky part is that they are invisible. Sometimes, I’ll write a script that
requires a bunch of blank space because the command requires that I press the enter key several
times in a row. AttEdit is an excellent example:
; Edit the attributes one at a time:
attedit 1,2

How many spaces are there between attedit and the coordinates 1,2? I’ll wait while you count them...

For this reason, it is better to place one script item per line, like this:
; Edit the attributes one at a time:
attedit

1,2

Now it’s easier to count the four spaces, since there is one per blank line.

368 Customizing BricsCAD V19

Comment - ;
You probably have already noticed that the semicolon lets you insert comments in a script file.
BricsCAD ignores anything following the semicolon.

Transparent - '
Scripts can be run transparently during a command. Simply prefix the Script command with an
apostrophe to run a script while another command is active, like this:
: line
Start of line: 'script
Script to run: filename

All four of BricsCAD’s script-specific commands are transparent, even 'Delay. That lets you create
a delay during the operation of a command — as if I needed an excuse to run BricsCAD slowly!

Pause - Backspace
...is the key I mentioned earlier for pausing a script file.

Stop - esc
...stops a script file dead in its tracks; use the RScript command to start it up again from the beginning

Programming with LISP

While toolbar and menu macros are easy to write and edit, they limit your ability to control
BricsCAD. In this chapter, we look at the most powerful method available to “non-programmers”
for customizing BricsCAD — the LISP programming language — at the cost of being somewhat
more difficult to create than macros or scripts.

This chapter shows you how to write programs using LISP, while appendix C provides a concise
reference to LISP functions.

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Learning the history of LISP in BricsCAD

• Checking the compatibility between LISP and AutoLISP

• Introducing the LISP programming language

• Employing simple LISP to add two numbers

• Using LISP in commands

• Overviewing LISP functions and external command functions

• Accessing system variables.

• Using advanced LISP functions

• Writing a simple LISP program

• Saving data to files

CHAPTER 21

370 Customizing BricsCAD V19

The History of LISP in BricsCAD

LISP is one of the earliest programming languages, developed in the late 1950s to assist artificial
intelligence research. Its name is short for “list processing,” and it was designed to handle lists of
words, numbers, and symbols.

LISP first appeared in CAD when, back in 1985, Autodesk added an undocumented feature to Auto-
CAD v2.15 called “Variables and Expressions.” Programmers at Autodesk had taken XLISP, a public
domain dialect written by David Betz, and adapted it for AutoCAD. The initial release of Variables
and Expressions was weak, because it lacked conditional statements -- needed by programming
languages to make decisions.

With additioanl releases, Autodesk added the missing programming statements, the powerful
GETxxx, SSxxx, and EntMod routines (that provide direct access to entities in the drawing database),
and they renamed the programming language “AutoLISP.” This allowed third-party developers to
wrote routines that manipulated the entire drawing, and non-programmers to write simple routines
that automated everyday drafting activities.

When SoftDesk developed IntelliCAD, they included a programming language very similar to Au-
toLISP, calling it simply “LISP.” (I think it would have been better to call it IntelliLISP to prevent
confusion with the real LISP programming language. Better yet, they could have given it the trendy
moniker of iLISP.)

BLADE ENVIRONMENT

BricsCAD includes LISP, and supports VisualLISP (not covered by this book). With V18, Bric-
sys includes an advanced LISP authoring environment called Blade: Bricsys LISP advanced
development environment (not covered by this book). To start it, enter the blade command
from within BricsCAD. More information about Blade search online for “bricsys blade,” such as
https://blog.bricsys.com/inside-bricsys-blade/.

 21 Programming with LISP 371

COMPATIBILITY BETWEEN LISP AND AUTOLISP

LISP in BricsCAD is, for the most part, compatible with AutoCAD’s AutoLISP. If you know AutoLISP,
you can program immediately in LISP, including controlling dialog boxes. LISP has, however, some
differences of which you should be aware.

Additional LISP Functions
LISP in BricsCAD contains additional functions not found in AutoLISP. These include the following:

LISP Function Meaning

acos Arc cosine
asin Arc sine
atanh Hyperbolic arc tangent
ceiling smallest integer that is not smaller than x .
cosh Hyperbolic cosine
find Finds an item in a list
floor Greatest integer less than or equal to x
get_diskserialid Unique nine-digit id string
getpid Process ID of the current process
grarc Draws a temporary arc or circle, with specified radius and color; optionally highlighted
grfill Draws temporary filled polygon area, with specified color; optionally in highlighted mode
log10 Log 10
position Index number of an item in a list
remove Removes an item from a list
round Rounds to the nearest integer
search Searches for an item, and returns its list number
sinh Hyperbolic sine
sleep Pause execution
string-split Splits a string based on a delimiter
tan Tangent
tanh Hyperbolic tangent
until Tests the expression until it is true
vla-collection->list Returns a collection as a LISP list

Different LISP Functions
LISP has several functions that operate differently from AutoLISP, by providing additional support.

These include:

LISP Function Comment

osnap Supports PLA (planview) entity snap for snapping to 2D intersections .
ssget and ssadd Supports additional selection modes:
 CC - Crossing Circle
 O - Outside
 OC - Outside Circle
 OP - Outside Polygon
 PO -POint

372 Customizing BricsCAD V19

Missing AutoLISP Functions
LISP lacks some functions found in AutoLISP. Because of the dynamic nature of LISP, it’s difficult to
create a definitive list. Here are some of the functions I have found missing:

•	 	 All	dict-related	functions.

•	 	 All	SQL-related	functions,	which	link	between	objects	in	the	AutoCAD	drawing	with	records	in	an	external	

database	file.	In	AutoCAD,	these	functions	start	with	“ase_”,	as	in	ase_lsunite	and	ase_docmp.

The LISP Programming Language

LISP is capable of many masks, from adding together two numbers — during the middle of a
command — to drawing parametrically a staircase in 3D, to generating a new user interface for
BricsCAD, to manipulating data in the drawing database.

The most important aspect of LISP, in my opinion, is that it lets you toss off a few lines of code to
help automate your work. In this chapter’s tutorials, I show you how to write simple LISP code that
makes your BricsCAD drafting day easier.

In contrast, BricsCAD’s most powerful programming facility — known as SDS (solutions develop-
ment system) — is merely an interface: you have to buy additional the programming tools (read:
$$$) and have an in-depth knowledge of advanced programming methodology. The primary ad-
vantage to using SDS is speed: these programs run compute-intensive code as much as 100 times
faster than LISP.

SIMPLE LISP: ADDING TWO NUMBERS

With that bit of background, let’s dive right into using LISP. Let’s start with something easy, some-
thing everyone knows about, adding together two numbers, like 9 plus 7.

1.	 Start	BricsCAD,	any	version;	there	is	no	need	to	open	a	drawing.

2.	 When	the	‘:’	command	prompt	appears,	type	the	boldface	text,	shown	below,	on	the	keyboard:
 : (+ 9 7) (Press enter.)
 16
 :

	 BricsCAD	instantly	replies	with	the	answer,	16.	(In	this	chapter,	I	show	the	function	I’m	talking	about	in	cyan.)	

Getting	to	this	answer	through	(+	9	7)	may,	however,	seem	convoluted	to	you.	That’s	because	LISP	uses	

prefix notation:	

The operator + appears before the operands, 9 and 7.

	 Think	of	it	in	terms	of	“add	9	and	7.”	This	is	similar	to	how	BricsCAD	itself	works:	type	in	the	command	name	

first	(such	as	Circle),	and	then	enter	the	coordinates	of	the	circle.

3.	 Notice	the	parentheses	that	surround	the	LISP	statement.	Every	opening	parenthesis,	(,	requires	a	closing	pa-

renthesis,).	I	can	tell	you	right	now	that	balancing	parentheses	is	the	most	frustrating	aspect	to	LISP.	Here’s	

what	happens	when	you	leave	out	the	closing	parentheses:

 21 Programming with LISP 373

 : (+ 9 7 (Press enter.)
 Missing: 1) >

	 BricsCAD	displays	the	“Missing:	1)”	prompt	to	tell	you	that	one	closing	parenthesis	is	missing.	If	two	closing	

parentheses	were	missing,	the	prompt	would	read	“Missing:	2)”.

4.	 Type	the	missing)	and	BricsCAD	is	satisfied:
 Missing: 1) >) (Press enter.)
 16
 :

5.		 The	parentheses	serve	a	second	purpose:	they	alert	BricsCAD	that	you	are	using	LISP.	If	you	were	to	enter	

the	same	LISP	function	‘+	7	9’	without	parentheses,	BricsCAD	would	react	unfavorably	to	each	character	

typed,	interpreting	each	space	as	the	end	of	a	command	name:
 : + (Press the spacebar.)
 Unable to recognize command. Please try again.

 : 9 (Press the spacebar.)
 Unable to recognize command. Please try again.

 : 7 (Press the spacebar.)
 Unable to recognize command. Please try again.
 :

6.	 As	you	might	suspect,	LISP	provides	all	the	basic	arithmetic	functions:	addition,	subtraction,	multiplication,	

and	division.	Try	each	of	the	functions,	subtraction	first:
 : (- 9 7)
 2
 :

7. Multiplication is done using the familiar * (asterisk) symbol, as follows:
 : (* 9 7)
 63
 :

8.	 Finally,	division	is	performed	with	the	/	(slash)	symbol:
 : (/ 9 7)
 1
 :

 Oops,	that’s	not	correct!	Dividing	9	by	7	is	1.28571,	not	1.	What	happened?	Up	until	now,	you	have	been	

working	with	integer numbers	(also	known	as	whole	numbers).	For	that	reason,	LISP	has	been	returning	the	

results	as	integer	numbers,	although	this	was	not	apparent	until	you	performed	the	division.

	 To	work	with	real	numbers,	add	a	decimal	suffix,	which	can	be	as	simple	as	.0	—	this	converts	integers	to	real	

numbers,	and	forces	LISP	to	perform	real-number	division,	as	follows:
 : (/ 9.0 7)
 1.28571
 :

	 And	LISP	returns	the	answer	correct	to	five	decimal	places.

9.	 Let’s	see	how	LISP	lets	you	nest calculations.	“Nest”	means	to	perform	more	than	one	calculation	at	a	time.
 : (+ (- (* (/ 9.0 7.0) 4) 3) 2)
 4.14286
 :

	 Note	how	the	parentheses	aid	in	separating	the	nesting	of	the	terms.

374 Customizing BricsCAD V19

LISP IN COMMANDS

Okay, so we’ve learned how BricsCAD works as a $495 four-function calculator. This overpriced
calculator pays its way when you employ LISP to perform calculations within commands. For ex-
ample, you may need to draw a linear array of seven circles to fit in a 9” space.

1. Start	the	Circle command,	as	follows:
 : circle
 2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: (Pick a point.)

2.	 Instead	of	typing	the	value	for	the	diameter,	enter	the	LISP	equation,	as	follows:
 Diameter/<Radius>: (/ 9.0 7)

 Diameter/<Radius>: 1.28571

	 BricsCAD	draws	a	circle	with	a	diameter	of	1.28571	inches.	You	can	use	an	appropriate	LISP	function	anytime	

BricsCAD	expects	user	input.

3.	 Now	go	on	to	the	Array command,	and	draw	the	other	six	circles,	as	follows:
 : array
 Select entities to array: L
 Entities in set: 1 Select entities to array: (Press enter.)
 Type of array: Polar/<Rectangular>: r
 Number of rows in the array <1>: (Press enter.)
 Number of columns <1>: 7
 Horizontal distance between columns: (/ 0.9 7)
 Horizontal distance between columns: 0.128571

	 Once	again,	you	use	LISP	to	specify	the	array	spacing,	which	happens	to	equal	the	circle	diameter.

REMEMBERING THE RESULT: SETQ

In the above example, you used the (/ 9.0 7) equation twice: once in the Circle command and again
in Array. Just as the M-key on a calculator lets it remember the result of your calculation, LISP can
be made to remember the results of all your calculations.

To do this, employ the most common LISP function, known as setq. This curiously named function
is short for SET eQual to.

1.	 To	save	the	result	of	a	calculation,	use	the	setq function	together	with	a	variable,	as	follows:
 : (setq x (/ 9.0 7))
 1.28571
 :

	 Here,	x	remembers	the	result	of	the	(/	9.0	7.0)	calculation.	Notice	the	extra	set	of	parentheses.	

	 From	algebra	class,	you	probably	recall	equations	like	‘x	=	7	+	9’	and	‘x	=	7	/	9’.	The	x	is	known	as	a	variable	

because	it	can	have	any	value.	

2. To	prove	to	yourself	 that	x	contains	 the	value	of	 1.28571,	use	BricsCAD’s !	 (exclamation)	prefix,	as	 follows:
 : !x
 1.28571
 :

	 The	! prefix	(sometimes	called	“bang”)	is	useful	for	reminding	yourself	of	the	value	contained	by	a	variable,	in	

case	you’ve	forgotten,	or	are	wondering	what	happened	during	the	calculation.

	 LISP	isn’t	limited	to	just	one	variable.	You	can	make	up	any	combination	of	characters	to	create	variable	

names,	such	as	pt1,	diameter,	and	yvalue.	The	only	limitation	is	that	you	cannot	use	LISP	function	names,	

 21 Programming with LISP 375

such	as	setq,	T,	and	getint.	In	fact,	it	is	good	to	create	variable	names	that	reflect	the	content,	such	as	the	

circle	diameter	calculated	above.	But	you	also	want	to	balance	a	descriptive	name,	such	as	diameter,	with	

minimized	typing,	such	as	x.	A	good	compromise	is	dia.	

3.	 You	make	one	variable	equal	another,	as	follows:
 : (setq dia x)
 1.28571

 : !dia
 1.28571
 :

4.	 Redo	the	Circle and	Array commands,	this	time	using	variable	dia,	as	follows:
 : circle
 2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: (Pick a point.)
 Diameter/<Radius>: !dia
 Diameter/<Radius>: 1.28571

 : array
 Select entities to array: L
 Entities in set: 1 Select entities to array: (Press enter.)
 Type of array: Polar/<Rectangular>: r
 Number of rows in the array <1>: (Press enter.)
 Number of columns <1>: 7
 Horizontal distance between columns: !dia
 Horizontal distance between columns: 0.128571

BricsCAD draws precisely the same seven circles, using the value 1.28571 stored in dia.

LISP Function Overview

LISP is so powerful that it can manipulate almost any aspect of the BricsCAD drawing. In the follow-
ing tutorial, you get a taste of the many different kinds of functions LISP offers you for manipulating
numbers and words. As we start on our whirlwind tour of several groups of functions, start BricsCAD,
and then type the examples in the Prompt History window (press F2) at the ‘:’ command prompt.

MATH FUNCTIONS

In addition to the four basic arithmetic functions, LISP has many of the mathematical functions you
might expect in a programming language. The list includes trigonometric, logarithmic, logical, and
bit manipulation functions; one type of function missing is matrix manipulation.

For example, the min function returns the smallest (minimum) of a list of numbers:
: (min 7 3 5 11)
3

To remember the result of this function, add setq with variable minnbr, as follows:
: (setq minnbr (min 7 3 5 11))
3

Now each time you want to refer to the minimum value of that series of numbers, you can refer to
variable minnbr. Here’s an example of a trig function, sine:

376 Customizing BricsCAD V19

: (sin minnbr)
0.14112

Returns the sine of the angle of 3 radians.

TIPS	 You	must	provide	the	angle	in	radians,	not	degrees.	This	is	many	times	an	inconvenience,	be-
cause	often	you	work	with	degrees,	but	must	convert	them	to	radians.		
	 Fortunately,	LISP	can	do	this	for	you,	as	long	as	you	code	it	correctly.	Recall	that	there	are	2*pi
(approximately	6.282)	radians	in	360	degrees.	For	example,	to	get	the	sine	of	45	degrees,	you	have	to	
indulge	in	some	fancy	footwork:	
								:	(sin (* (/ 45 180.0) pi))	
								0.707107	
	
Here	I	divided	the	degrees	(45)	by	180,	then	multiplied	by	pi.	Either	the	45	or	the	180	needs	a	decimal	(.0)	
to	force	division	by	real	numbers,	rather	than	by	integers.		
	
By	the	way,	pi	is	the	only	constant	predefined	in	LISP,	and	is	equal	to	3.1415926.	That	means	you	just	type	
pi,	instead	of	3.1415926	each	time	you	need	the	value	of	pi	in	a	function.	To	see	this	for	yourself,	use	the	
exclamation	mark	at	the	command	prompt:	
								:	!pi	
								3.14159	
	
LISP	displays	the	result	to	six	decimal	places,	even	though	it	performs	calculations	to	32-bit	accuracy.

GEOMETRIC FUNCTIONS

Since CAD deals with geometry, LISP has a number of functions for dealing with geometry.

Distance Between Two Points
The LISP distance function is similar to BricsCAD’s Dist command: it returns the 3D distance
between two points. To see how it works, first assign x,y-coordinates to a pair of points, p1 and
p2, as follows:
: (setq p1 '(1.3 5.7))
(1.3 5.7)

: (setq p2 '(7.5 3.1 11))
(7.5 3.1 11)

: (distance p1 p2)
6.72309

You may have missed that single quote mark in front of the list of x,y-coordinates, as in: '(1.3 5.7).
That tells LISP you are creating a pair (or triple in the case of x,y,z) of coordinates, and that it should
not evaluate the numbers. Technically, the ‘ mark creates a list of numbers.

To separate the coordinates use spaces, not commas. Note that when you leave out the z-coordinate,
LISP assumes it equals 0.0000.

The Angle from 0 Degrees
Other geometric functions of interest include finding the angle from 0 degrees (usually pointing
east) to the line defined by p1 and p2:
: (angle p1 p2)
5.88611

 21 Programming with LISP 377

The result is returned in radians: 5.88611.

The Intersection of Two Lines
The intersection of two lines is determined by the inters function:
: (inters pt1 pt2 pt3 pt4)

Entity Snaps
In the following function, you are finding the midpoint of the line that starts at p1. You apply the
osnap function and specify the type of osnap; LISP returns the x,y,z-coordinates of the entity snap
point. The entity must actually exist.
: line
From point: !p1
To point: !p2
To point: (Press enter.)

: (osnap p1 "mid")
(4.4 4.4 5.5)

Here “mid” refers to the midpoint entity snap mode.

The other geometric functions include textbox (for finding the rectangular outline of a line of text)
and Polar, which returns a 3D point of a specified distance and angle.

CONDITIONAL FUNCTIONS

You could say that conditional functions are most important, because they define the existence of
a programming language. It is conditionals that allow a computer program to “think” and make
decisions. Conditional functions check if one value is less than, equal to, or greater than another
value. They check if something is true; or they repeat an action until something is false.

If you’re not sure if it’s a programming language or merely a macro language, check for conditionals.
Toolbar macros, for example, have no conditionals; they are not a programming language.

Here is an example of how conditional functions operate: if the floor-to-ceiling distance is greater
than eight feet, then draw 14 steps; else, draw 13 steps. Notice that there are two parts to the state-
ment: the if part is the true part; the else part is the false part. Do something if it is true; otherwise,
so something else if it is false.

Similar wording is used in LISP’s condition functions. Enter the following at the ‘:’ prompt:
: (if (> height 96) (setq steps 14) (setq steps 13))
13

Let’s break down this code to see how the if function compares with our statement:
(if If
 (> greater than
 height floor-to-ceiling distance is
 96) 8 feet;
 Then
 (setq steps 14) use 14 steps.
 Else

378 Customizing BricsCAD V19

 (setq steps 13) use 13 steps.
)

Other Conditionals
The if function is limited to evaluating just one conditional. The cond functions evaluate many
conditions. The repeat function executes a specific number of times, while the while function
executes code for as long as it is true.

STRING AND CONVERSION FUNCTIONS

You can manipulate strings (text consisting of one or more characters) in LISP, but to a lesser extent
than numbers. For example, you can find the length of a string as follows:
: (strlen “BricsCAD World”)
16

The strlen (short for STRing LENgth) function tells you that “BricsCAD World” has 16 characters
in it, counting the space. Notice how “BricsCAD World” is surrounded by quotation marks. That
tells LISP you are working with a string, not a variable.

If you were to type (strlen BricsCAD World), LISP tries to find the length of the strings held by
variables BricsCAD and World. For example:
: (setq BricsCAD "A software package")
"A software package"

: (setq world "the planet earth")
"the planet earth"

: (strlen BricsCAD world)
34

Joining Strings of Text
Other string functions change all characters to upper or lower case (strcase), returns part of a string
(substr), searches and replaces text in a string (subst), and join two strings together (strcat), as
follows:
: (strcat BricsCAD " used all over " world)
"A software package used all over the planet earth"

That’s how you create reports, such as “13 steps drawn”, by mixing variables and text.

Converting Between Text and Numbers
Related to string functions are the conversion functions, because some of them convert to and from
strings. For example, earlier I showed how to convert degrees to radians. That’s fine for decimal
degrees, like 45.3711 degrees. But how do you convert 45 degrees, 37 minutes and 11 seconds,
which BricsCAD represents as 45d37’11”? That’s where a conversion function like angtof (short
for ANGle TO Floating-point) comes in. It converts an angle string to real-number radians:
: (angtof "45d37'11\"" 1)
0.796214

 21 Programming with LISP 379

Here we’ve supplied angtof with the angle in degrees-minutes-seconds format. However, LISP isn’t
smart enough to know, so we tell it by means of the mode number, 1 in this case.

This (and some other functions) use the following as mode codes:

Mode Meaning Example

0 Decimal degrees 45 .3711
1 Degrees-minutes-seconds 45d 37' 11"
2 Grad 100 .1234
3 Radian 0 .3964
4 Surveyor units N 45d37'11" E

Notice the similarity between the mode numbers and the values of system variable AUnits — and
the modes used by Diesel. The coincidence is not accident. When you don’t know ahead of time
the current setting of units, you make use of this fact by specifying the mode number as a variable,
as follows:
: (angtof "45d37'11\"" (getvar "aunits"))
0.796214

Here we use getvar (short for GET VARiable), the LISP function that gets the value of a system
variable. We used getvar to get aunits, which holds the state of angular display as set by the Units
command.

Notice how the seconds indicator (") is handled: \". That’s so it doesn’t get confused with the
closing quote mark (") that indicates the end of the string.

Other Conversion Functions
Other conversion functions convert one unit of measurement into another (via the cvunit func-
tion and the default.unt file), an integer number into a string (itos), a character into its ASCII value
(ascii: for example, letter A into ASCII value 65), and translates (moves) a point from one coordinate
system to another (trans).

The default.unt file is found in the C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V19\
en_US\Support folder.

EXTERNAL COMMAND FUNCTIONS

“Powerful” often equates to “complicated,” yet one of LISP’s most powerful functions is its simplest
to understand: the command function. As its name suggests, command executes BricsCAD com-
mands from within LISP.

Think about it: this means that it is trivial to get LISP to draw a circle, place text, zoom a viewport,
whatever. Anything you type at the ‘:’ command prompt is available with the command function.
Let’s see how command works by drawing a circle. First, though, let’s recall how the Circle com-
mand operates:

380 Customizing BricsCAD V19

: circle
2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: 2,2
Diameter/<Radius>: D
Diameter of circle: 1.5

Switching to the command function, you mimic what you type at the ‘:’ prompt, as follows. (This
is where Chapter 16’s practice in creating script files is handy.)
: (command "circle" "2,2" "D" "1.5")

Notice how all typed text is in quotation marks. After you enter that line of code, BricsCAD responds
by drawing the circle:
: circle
2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: 2,2
Diameter/<Radius> <1.2857>: D
Diameter of circle <2.5714>: 1.5

Let’s look at one of the more complex commands to use with the command function, Text. When
we use the Text command, BricsCAD presents these prompts:
: text
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>: 5,10
Height of text <0.2000>: 1.5
Rotation angle of text <0>: (Press enter.)
Text: Tailoring BricsCAD

Converted to LISP-ese, this becomes:
: (command "text" "5,10" "1.5" "" "Tailoring BricsCAD")

And BricsCAD responds with:
: text
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>: 5,10
Height of text <1.5000>: 1.5
Rotation angle of text <0>:
Text: Tailoring BricsCAD

and then draws the text.

For the ‘Rotation angle:’ prompt, we simply pressed the enter key. Notice how that is dealt with
in the LISP function: “” — a pair of empty quotation marks.

You use the same “” to end commands that automatically repeat themselves, such as the Line com-
mand:
: (command "line" "1,2" "3,4" "")

When you don’t include that final "", then you leave BricsCAD hanging with a ‘End point:’ prompt
and your LISP routine fails.

By now it should be clear to you that you have to really know the prompt sequence of BricsCAD’s
more than 300 commands to work effectively with the command function. The easiest way to get
a handle on those is to purchase one of the “quick reference” books on the market, which list com-
mands in alphabetical order, along with the complete prompt sequence. And, as we see in a minute,

 21 Programming with LISP 381

check that the quick reference book has a listing of all system variables, their default value, and the
range of permissible values.

Command Function Limitation
But the command function has a failing. Earlier, I said, “Anything you type at the ‘:’ command prompt
is available with the command function.” I now place emphasis on the word “type.” The command
function breaks down completely when it comes to dialog boxes. That’s right: any command that
uses a dialog box won’t work with the command function — nor, for that matter, with the macros
we looked at in previous chapters. It is for this reason that BricsCAD includes command-line ver-
sions of almost every (but not all) command.

Accessing System Variables
While you can use the command function to access system variables, LISP has a pair of more direct
functions: getvar and setvar.

Getvar gets the value of a system variable, while setvar changes (sets) the value.

For example, system variable SplFrame determines whether the frame of a spline polyline is dis-
played; by default, the value of SplFrame is 0: the frame is not displayed, as confirmed by getvar:
: (getvar "splframe")
0

To display the frame, change the value of SplFrame to 1 with setvar as follows:
: (setvar "splframe" 1)
1

We have, however, made a crass assumption: that the initial value of SplFrame is 0. Zero is the
default value, but not necessarily the value at the time that you run the LISP routine. How do we
know what the value of SplFrame is before we change it? We’ll answer that question later in this
chapter. Stay tuned.

GETXXX FUNCTIONS

It’s one thing to execute a command that draws a new entity, such as the circle and text we drew above
with the command function. It is trickier working with entities that already exist, such as moving
that circle or editing the text. That’s where the a group of functions known collectively as Getxxx
come into play. These functions get data from the screen. Some of the more useful ones include:

getpoint Returns the x,y,z-coordinate of a picked point .
getangle Returns the angle in radians .
getstring Returns the text typed by the user .
getreal Returns the value of a real number typed by the user .

Here’s how to use some of these with the Text command. Let’s redo the code with getstring so
that LISP prompts us for everything first, then executes the Text command. Here is the first line of

382 Customizing BricsCAD V19

code, which prompts the user to input some text:
: (setq TxtStr (getstring T "What do you want to write? "))
What do you want to write?

Notice that extra “T”; that’s a workaround that lets getstring accept a string of text with spaces.
When you leave out the T, then getstring accepts text up to the first space only, If you were to enter
“Tailoring BricsCAD”, you would end up with just “Tailoring” and no “BricsCAD.”

Also in the line of code above, the setq function stores the phrase, such as “Tailoring BricsCAD,” in
the variable TxtStr.

In the next line of code, we use the getreal function to ask for the height of text, which is a real
number (decimal) entered by the user.
: (setq TxtHt (getreal "How big do you want the letters? "))
How big do you want the letters? 2
2.0

Notice how getreal converts the 2 (an integer) to a real number, 2.0. The value is stored in vari-
able TxtHt.

Next, we use the getangle function to ask for the rotation angle of the text:
: (setq TxtAng (getangle "Tilt the text by how much? "))
Tilt the text by how much? 30
0.523599

Notice how getangle converts the 30 (a decimal degree) into radians, 0.523599. The value is stored
in variable TxtAng.

Then, we use the getpoint function to ask the user for the insertion point of the text:
: (setq TxtIns (getpoint "Where do you want the text to start? "))
Where do you want the text to start? (Pick a point.)
(27.8068 4.9825 0.0)

Notice how getpoint returns the x, y, and z values of the coordinate, even though z is zero. The user
can pick a point on the screen, or enter a coordinate pair (x,y) or triple (x,y,z).

Finally, we execute the Text command with the four variables:
: (command "text" TxtIns TxtHt TxtAng TxtStr)
text Justify/Style:
Height <1.5000>: 2.000000000000000
Rotation angle <0>: 0.523598775598299
Text: Tailoring BricsCAD
: nil

 21 Programming with LISP 383

There! We’ve just customized the Text command to our liking. Not only did we change the prompts
that the user sees, but we used LISP to change the order of the prompts.

SELECTION SET FUNCTIONS

To work with more than one entity at a time, LISP has a group of functions for creating selection
sets. These all begin with “SS”, as in:

SsAdd Adds entities to selection sets .
SsDel Deletes entities from selection sets .
SsGetFirst Reports the number of selected entities .
SsLength Reports the number of entities in the selection set .
SsMemb Checks if entities are part of a selection set .
SsName Identifies the nth entity in a selection set.
SsSetFirst Highlights objects in a selection set .

BricsCAD’s Select command can deal only with one selection set at a time; in contrast, the LISP
SSxxx commands can work with up to 128 selection sets.

ENTITY MANIPULATION FUNCTIONS

The really powerful LISP functions are the ones that go right in and manipulate the drawing database.
Unlike the command function, which is powerful but simple, the entity manipulation functions are
powerful and complicated. Here’s a summary of what some of these are:

EntMake Creates new entities .
EntGet Gets the data that describes entities in drawings .
EntMod Changes entities .
EntDel Erases entities from the database .
TblObjName Gets the names of entities in symbol tables .

The “Ent” prefix is short for entity. The “symbol table” refers to the part of the drawing database
that stores the names of layers, text styles, and other named entities in the drawing.

To create and manipulate entities, these LISP functions work with a variant on the DXF format,
known as “dotted pairs.” For example, to work with a layer named RightOfWay, you employ the
following format:
 "2 . RightOfWay"

The quotation marks indicate the start and end of the data, while the dot in the middle separates
the two values: The 2 is the DXF code for layer names, and RightOfWay is the name of the layer.
You can see that to work with these entity manipulation functions, you need a good grasp of the
DXF format.

ADVANCED LISP FUNCTIONS

There is a whole host of LISP functions that you may never use in your BricsCAD programming
career. For example, there are LISP functions for controlling the memory, such as gc (garbage
collection) and mem (memory status). Another set of LISP functions are strictly for loading and

384 Customizing BricsCAD V19

displaying dialog boxes, such as load_dialog and new_dialog.

Writing a Simple LISP Program

 In this section, you learn the first steps in writing a LISP routine of your own.

WHY WRITE A PROGRAM?

If you are like many CAD users, you are busy creating drawings, and you have no time to learn how
to write software programs. No doubt, you may be wondering, “Why bother learning a programming
language?” In some ways, it’s like being back again in school. Sitting in the classroom sometimes
seems like a waste of time.

But the things you learn now make life easier later. Learning some LISP programming now means
you’ll feel really good whipping off a few lines of code to let LISP perform tedious tasks for you.
The nice thing about LISP is that you can program it on the fly. And you can use it for really simple
but tedious tasks.

Here’s the example we’ll use for this tutorial:

The Id Command
BricsCAD has the Id command. When you pick a point on the screen, Id reports the 3D x,y,z- coor-
dinates of the point. Problem is, Id reports the value in the command prompt area, like this:
: id
Select a point to identify coordinates: (Pick a point.)
X = 8.9227 Y = 6.5907 Z = 0.0000

Wouldn’t it be great if you could change Id so that it places the coordinates in the drawing, next
to the pick point? That would let you label x,y-coordinates and z-elevations over a site plan. With
LISP, you can.

THE PLAN OF ATTACK

Before you write any LISP code, you need to figure out how you’re going to get those x,y,z-coordinates
off the command prompt area, and into the drawing. Recognize that there are two parts to solving
the problem:

	 Part 1.	Obtain	the	coordinates	from	the	drawing,	probably	by	picking	a	point.

 Part 2. Place	the	coordinates	as	text	in	the	drawing.

Obtaining the Coordinates
LISP provides several ways to get the coordinates of a picked point. Browsing through the LISP
Programming Language Reference, you learn you could:

 21 Programming with LISP 385

•	 Use	the	Id command	with	the	command function,	as	in (command “ID”).	

•	 Use	the	LastPoint system	variable	with	the	getvar function,	as	in (getvar “lastpoint”).	

•	 Use	the	getpoint function,	as	in (getpoint “Pick a point: “)

It would be a useful lesson to use each of the three, and then see what happens. By experimenting,
you make mistakes, and then learn from the mistakes.

1.	 Start	BricsCAD,	load	a	drawing,	and	switch	to	the	Prompt	History	window	with	F2.	At	the	‘:’	prompt,	enter:
 : (command "ID")

	 Here	you	are	executing	an	BricsCAD	command	(Id)	from	within	a	LISP	routine.	The	command function	lets	

you	use	any	BricsCAD	command	in	LISP.	The	BricsCAD	command	is	in	quotation	marks	“ID”	because	the	com-

mand	is	a	string (programmer-talk	for	“text”).	Just	as	before,	BricsCAD	prompts	you	for	the	point.	

2.	 In	response	to	the	LISP	routine’s	prompt,	pick	a	point:
 Select a point to identify coordinates: (Pick a point.)
 X = 8.9227 Y = 6.5907 Z = 0.0000

3.	 Unknown	to	you,	BricsCAD	always	stores	the	x,y,z-coordinates	of	the	last-picked	point	in	a	system	variable	

called	LastPoint.	So,	you	should	copy	the	coordinates	from	LastPoint to	a	variable	of	your	own	making.	You	

need	to	do	this	because	the	coordinates	in	LastPoint are	overwritten	with	the	next	use	of	a	command	that	

makes	use	of	a	picked	point.

	 Recall	from	in	this	chapter	that	the	setq function	stores	values	in	variables.	Make	use	of	it	now.	At	the	‘:’	

prompt,	enter:
 : (setq xyz (getvar "LastPoint"))
 (8.9227 6.5907 0.0000)

•	 Xyz is	the	name	of	the	variable	in	which	you	store	the	x,y,z-coordinate.	

•	 Getvar is	the	name	of	the	LISP	function	that	retrieves	the	value	stored	in	a	system	variable.	

•	 And	“LastPoint”	is	the	name	of	the	system	variable;	it	is	surrounded	by	quotation	marks	because	it	is	a	

system	variable	name	(a	string).

	 After	entering	the	LISP	function,	BricsCAD	returns	the	value	it	stored	in	variable	xyz,	such	as	(8.9227	6.5907	

0.0000)	—	your	result	will	be	different.	Notice	how	the	coordinates	are	surrounded	by	parenthesis.	This	is	

called	a	list,	for	which	LISP	is	famous	(indeed,	LISP	is	short	for	“list	processing”).	Spaces	separate	the	num-

bers,	which	are	the	x,	y,	and	z-coordinates,	respectively:
 x 8.9227
 y 6.5907
 z 0.0000

	 BricsCAD	always	stores	the	values	in	the	order	of	x,	y,	and	z.	You	will	never	find	the	z-	coordinate	first	or	the	

x-coordinate	last.	

So, we’ve now solved the first problem in one manner. We obtained the coordinates from the
drawing, and then stored them in a variable. We did mention a third LISP function we could use,
getpoint. Programmers prefer getpoint because it is more efficient than the Id-LastPoint combo
we used above.

Type the following to see that it works exactly the same, the difference being that we provide the
prompt text (“Point: ”):
: (setq xyz (getpoint "Point: "))
Point: (Pick a point.)
(8.9227 6.5907 0.0000)

386 Customizing BricsCAD V19

As before, we use the setq function to store the value of the coordinates in variable xyz. The get-
point function waits for you to pick a point on the screen. The “Point: “ is called a prompt, which
tells the user what the program is expecting the user to do. We could just as easily have written
anything, like:
: (setq xyz (getpoint "Press the mouse button: "))
Press the mouse button: (Pick a point.)
(8.9227 6.5907 0.0000)

Or, we could have no prompt at all, as follows:
: (setq xyz (getpoint))
(Pick a point.)
(8.9227 6.5907 0.0000)

That’s right. No prompt. Just a silent BricsCAD waiting patiently for the right thing to happen ...
and the user puzzled at why nothing is happening. A lack of communication, you might say. That’s
why prompts are important.

We’ve now seen a couple of approaches that solve the same problem in different ways. With the
x,y,z-coordinates safely stored in a variable, let’s tackle the second problem

PLACING THE TEXT

To place text in the drawing, we can use only the command function in conjunction with the Text
command. I suppose the MText command might work, but you want to place one line of text, and
the Text command is excellent for that. The Text command is, however, trickier than the Id com-
mand. It has a minimum of four prompts that your LISP routine must answer:
: text
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>:
Height of text <2>:
Rotation angle of text <0>:
Text:

Start point: a	pair	of	numbers,	specifically	an	x,y-coordinate.	

Height of text:	a	number	to	makes	the	text	legible.	

Rotation angle of text:	a	number,	probably	0	degrees.	

Text:	the	string,	in	our	case	the	x,y,z-coordinates.

Let’s construct a LISP function for placing the x,y,z-coordinates as text:
(command "text" xyz 200 0 xyz)

(command is	the	command function.

“text” is	the	BricsCAD	Text command	being	executed.	

xyz variable	stores	the	starting	point	for	the	text.

200 is	the	height	of	the	text.	Change	this	number	to	something	convenient	for	your	drawings.

0 is	the	rotation	angle	of	the	text.

xyz means	you’re	lucky:	the	Text command	accepts	numbers	as	text.

 21 Programming with LISP 387

) and	remember:	one	closing	parenthesis	for	every	opening	parenthesis.

Try this out at the ‘:’ prompt:
: (command “text” xyz 200 0 xyz)
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>:
Height of text: 200
Rotation angle of text: 0
Text: 2958.348773815669,5740.821183398367
:

BricsCAD runs through the Text command, inserting the responses for its prompts, then placing
the coordinates as text. We’ve solved the second part of the problem.

PUTTING IT TOGETHER

Let’s put together the two solutions to your problem:
(setq xyz (getpoint "Pick point: "))
(command "text" xyz 200 0 xyz)

There you have it: a full-fledged LISP program. Well, not quite. It’s a pain to retype those two lines
each time you want to label a point. In the next section, you find out how to save the code as a .lsp
file on disk. You’ll also dress up the code.

Adding to the Simple LISP Program

There you have it: a full-fledged LISP program. Well, not quite. What you have is the algorithm — the
core of every computer program that performs the actual work. What is lacking is most of a user
interface — the part that makes it easier for any user to employ the program.

All you have for a user interface is part of the first line that prompts, “Select point to identify co-
ordinates: ”. There’s a lot of user interface problems with this little program. How many can you
think of? Here’s a list of problems I came up with:

•	 It’s	a	pain	to	retype	those	two	lines	each	time	you	want	to	label	a	point	—	you	need	to	give	the	program	a	

name	...	

•	 ...	and	you	need	to	save	it	on	disk	so	that	you	don’t	need	to	retype	the	code	with	each	new	BricsCAD	ses-

sion...	

•	 ...	and,	if	you	use	this	LISP	program	a	lot,	then	you	should	have	a	way	of	having	it	load	automatically.	

•	 The	x,y,z-coordinates	are	printed	to	eight	decimal	places;	for	most	users,	that’s	w-a-y	too	many.	

•	 You	may	want	to	control	the	layer	that	the	text	is	placed	on.	

•	 You	may	want	a	specific	text	style.	

•	 Certainly,	you	would	like	some	control	over	the	size	and	orientation	of	the	text.	

•	 Here’s	an	orthogonal	idea:	store	the	x,y,z-coordinates	to	a	file	on	disk	—	just	in	case	you	ever	want	to	reuse	

the	data.

388 Customizing BricsCAD V19

CONQUERING FEATURE BLOAT

“Okay,” you may be thinking, “I can agree that these are mostly desirable improvements. Go right
ahead, Mr. Grabowski: Show me how to add them in.”

But, wait a minute! When you’re not familiar with LISP, you may not realize how a user interface
adds a tremendous amount of code, which mean more bugs and more debugging. (If you are famil-
iar with programming, then you know how quickly a simple program fills up with feature-bloat.)
While all those added features sound desirable, they may make the program less desirable. Can you
image how irritated you’d get if you had to answer the questions about decimal places, text font,
text size, text orientation, layer name, filename — each time you wanted to label a single point?

Take a second look at the wish list above. Check off features important to you, and then cross out
those you could live without.

Wishlist Item #1: Naming the Program
To give the program a name, surround the code with the defun function, and give it a name, as
follows:
(defun c:label (/ xyz)
(setq xyz (getpoint "Pick point: "))
(command “text” xyz 200 0 xyz)
)

Let’s take a look at what’s been added, piece by piece:

Defining the Function - defun
(defun defines the name of the function. In LISP, the terms function, program, and routine are used
interchangeably (defun is short for “define function.”)

Naming the Function - C:
c:label is the name of the function. I decided to call this program “Label”; you can call it anything
you like, so long as the name does not conflict with that of any built-in LISP function or other user-
defined function. The c: prefix make this LISP routine appear like an BricsCAD command.

To run the Label program, all you need do is type “label” at the ‘:’ prompt, like this:
: label
Select a point to identify coordinates: (Pick a point.)

When the c: prefix is missing, however, then you have to run the program like a LISP function,
complete with the parentheses, as follows:
: (label)
Select a point to identify coordinates: (Pick a point.)

 21 Programming with LISP 389

Local and Global Variables - /
(/ xyz) declares the names of input and local variables; the slash separates the two:

	 Input variables	—	feed	data	to	LISP	routines;	the	names	of	input	variables	appear	before	the	slash.	

	 Local variables	—	used	only	within	programs;	the	names	of	local	variables	appear	after	the	slash.	

In this program, xyz is the name of the variable that is used strictly within the program. If variables
are not declared local, they become global. The value of a global variable can be accessed by any
LISP function loaded into BricsCAD.

The benefit to declaring variables as local is that BricsCAD automatically frees up the memory used
by the variable when the LISP program ends; the drawback is that the value is lost, making debug-
ging harder. For this reason, otherwise-local variables are kept global until the program is debugged.

And the) closing parenthesis balances the opening parenthesis at the beginning of the program.

Wishlist Item #2: Saving the Program
By saving the program to a file on disk, you avoid retyping the code with each new BricsCAD ses-
sion. You do this, as follows:

1.	 Start	a	text	editor	(the	Notepad	supplied	with	Windows	or	Text	Edit	with	Linux	and	Mac	are	good).

2. Type	the	code	shown:
 (defun c:label (/ xyz)
 (setq xyz (getpoint "Pick point: "))
 (command “text” xyz 200 0 xyz)
)

	 I	indented	the	code	in	the	middle	to	make	it	stand	out	from	the	defun line	and	the	closing	parenthesis.	This	

is	standard	among	programmers;	the	indents	make	it	easier	to	read	code.	You	can	use	a	pair	of	spaces	or	the	

tab	key	because	LISP	doesn’t	care.

3.		 Save	the	file	with	the	name	label.lsp	in	BricsCAD’s	folder.

Wishlist Item #3: Automatically Loading the Program
To load the program into BricsCAD, type the following:
: (load "label")

If BricsCAD cannot find the LISP program, then you have to specify the path. Assuming you saved
label.lsp in the \cad\support folder, you would enter:
: (load "\\cad\\support\\label")

Now try using the point labelling routine, as follows:
: label
Select a point to identify coordinates: (Pick a point.)

TIP	 BricsCAD	provides	a	way	to	automatically	load	LISP	programs.	When	BricsCAD	starts	up,	it	looks	
for	a	file	called	icad.lsp.	BricsCAD	automatically	loads	the	names	of	LISP	programs	listed	in	the	file.	

390 Customizing BricsCAD V19

Adding label.lsp to icad.lsp is easy. Open the icad.lsp file with a text editor (if the file does not exist,
then start a new file called acad.lsp and store it in the \BricsCAD folder). Add the name of the program:
(load "label.lsp")

Save the icad.lsp file. Start BricsCAD and it should load label automatically.

Wishlist #4: Using Car and Cdr
The x,y,z-coordinates are printed to eight decimal places — that’s too many. There are two solutions.
One is to ask the user the number of decimal places, as shown by the following code fragment:
: (setq uprec (getint "Label precision: "))
Label precision: 1
1

Or steal the value stored in system variable LUPrec — the precision specified by the user through
the Units command — under the (not necessarily true) assumption that the user want consistent
units. The code to do this is as follows:
(setq uprec (getvar "LUPREC"))

That was the easy part. The tough part is applying the precision to the x,y,z-coordinates, which
takes three steps: (1) pick apart the coordinate triplet; (2) apply the precision factor; and (3) join
together the coordinates. Here’s how:

1. Open label.lsp	in	NotePad	or	other	text	editor.	Remove	/ xyz	from	the	code.	This	makes	the	variable	“global,”	

so	that	you	can	check	its	value	at	BricsCAD’s	‘:’	prompt.	The	code	should	look	like	this:
 (defun c:label ()
 (setq xyz (getpoint "Pick point: "))
 (command “text” xyz 200 0 xyz)
)

2.	 Save,	and	then	load label.lsp into	BricsCAD.

3. Run	label.lsp,	picking	any	point	on	the	screen.	If	you	don’t	see	the	coordinates	printed	on	the	screen,	use	the

Zoom Extents command.

4.	 At	the	‘:’	prompt,	enter	the	following:
 : !xyz
 (6.10049 8.14595 10.0)

	 The	exclamation	mark	forces	BricsCAD	to	print	the	value	of	variable	xyz,	which	holds	the	x,y,z-coordinates.	

Your	results	will	differ,	depending	on	where	you	picked.

5.	 LISP	has	several	functions	for	picking	apart	a	list.	Here	you	use	the	car and	cdr functions,	and	combinations	

thereof.	The	car function	extracts	the	first item	(the	x-coordinate)	from	a	list.	Try	it	now:
 : (car xyz)
 6.10049

6.	 The	cdr function	is	the	compliment	to	car.	It	removes	the	first	item	from	the	list,	and	then	gives	you	what’s	

left	over:
 : (cdr xyz)
 (8.14595 10.0)

7.	 In	addition	to	car and	cdr,	LISP	allows	me	to	combine	the	“a”	and	“d”	in	several	ways	to	extract	other	items	

in	the	list.	To	extract	the	y-coordinate,	use	cadr,	as	follows:
 : (cadr xyz)
 8.14595

 21 Programming with LISP 391

8.	 And	to	extract	the	z-coordinate,	use	caddr,	as	follows:
 : (caddr xyz)
 8.14595

9. I	now	have	a	way	to	extract	the	x-coordinate,	the	y-coordinate,	and	the	z-coordinate	from	variable	xyz.	I’ll	

store	them	in	their	own	variables,	as	follows:
 : (setq ptx (car xyz)
 Missing: 1) > pty (cadr xyz)

 Missing: 1) > ptz (caddr xyz)
 Missing: 1) >)

	 You	use	variable	PtX to	store	the	x-coordinate,	PtY for	the	y-coordinate,	and	so	on.	In	addition,	a	form	of	LISP	

shorthand	was	used	in	the	code	above	that	allows	you	apply	the	setq function	to	several	variables.	Recall	the	

reason	for	BricsCAD’s	‘Missing:	1)	>’	prompt:	it	reminds	you	that	a	closing	parenthesis	is	missing.

10.	 Now	that	the	three	coordinates	are	separated,	you	can	finally	reduce	the	number	of	decimal	places.	There	

are	a	couple	of	ways	to	do	this.	Use	the	rtos function,	because	it	does	two	things	at	once:	(1)	changes	the	

number	of	decimal	places	to	any	number	between	0	and	8;	and	(2)	converts	the	real	number	into	a	string.	

Why	a	string?	You’ll	see	later.	For	now,	here	is	the	rtos function	at	work:
 : (rtos ptx 2 uprec)
 "6.1"

 The rtos function uses three parameters: ptx, 2, and uprec.

PtX 	Name	of	the	variable	holding	the	real	number.	

2 	 Type	of	conversion,	decimal	in	this	case.	The	number	2 is	based	on	system	variable	LUnits,	which	defines	
five	modes	of	units:

Mode Units

1 Scientific
2 Decimal
3 Engineering
4 Architectural
5 Fractional

UPrec Name	of	the	variable	holding	the	precision	(the	code	for	that	is	at	the	beginning	of	this	section).	This	

varies,	depending	on	the	type	of	units.	For	example,	a	value	of	2	for	decimal	means	two	decimal	places;	

a	2	for	architectural	means	quarter-inch.

	 Assuming,	then,	that	the	precision	in	UPrec is	1,	the	rtos function	in	the	code	fragment	above	reduces	

6.10049	to	6.1.

11. 	 Truncate,	and	preserve	the	values	of	x,	y,	and	z	three	times,	as	follows:
 : (setq ptx (rtos ptx 2 uprec)
 1> pty (rtos pty 2 uprec)
 1> ptz (rtos ptz 2 uprec)
 1>)

	 Notice	that	you	can	set	a	variable	equal	to	itself:	PtX holds	the	new	value	of	the	x-coordinate	after	rtos gets	

finished	processing	the	earlier	value	stored	in	PtX.	Reusing	a	variable	name	like	this	helps	conserve	memory.

12.		 With	the	coordinates	truncated,	you	now	have	to	string	(pardon	the	pun)	them	together	with	the	strcat func-

tion,	short	for	string	concatenation.	Try	it	now:
 : (strcat ptx pty ptz)
 "6.18.110.0"

392 Customizing BricsCAD V19

13.	 Oops!	Not	quite	the	look	you	may	have	been	hoping	for.	Since	LISP	can’t	know	when	you	want	spaces,	it	pro-

vides	none.	You	have	to	insert	them	yourself	using	strcat,	one	of	the	most	useful	LISP	functions.	It	lets	you	

create	a	string	that	contains	text	and	variables,	like	this:
 : (setq xyz (strcat ptx ", " pty ", " ptz))
 "6.1, 8.1, 10.0"

	 That’s	more	like	it!

14. Back	to	the	text	editor.	Add	in	the	code	you	developed	here,	shown	in	boldface,	and	with	LISP	functions	in	

cyan:
 (defun c:label (/ xyz xyz1 uprec ptx pty ptz)
 (setq uprec (getint "Label precision: "))
 (setq xyz (getpoint "Pick point: "))
 (setq ptx (car xyz)
 pty (cadr xyz)
 ptz (caddr xyz)
)

 (setq ptx (rtos ptx 2 uprec)
 pty (rtos pty 2 uprec)
 ptz (rtos ptz 2 uprec)
)

 (setq xyz1 (strcat ptx ", " pty ", " ptz))
 (command "text" xyz 200 0 xyz1)
)

	 Notice	that	all	variables	are	local.	Notice,	too,	the	change	to	variable	xyz in	the	last	couple	of	lines:	you	don’t	

want	the	text	placed	at	the	rounded-off	coordinates,	so	use	xyz1 as	the	variable	holding	the	text	string.

15.		 Finally,	you	should	add	comments	to	your	code	to	remind	you	what	it	does	when	you	look	at	the	code	several	

months	from	now.	Semicolons	indicate	the	start	of	comments:
; Label.Lsp labels a picked point with its x,y,z-coordinates.
; by Ralph Grabowski, 25 February, 1996.
(defun c:label (/ xyz xyz1 uprec ptx pty ptz)

 ; Ask user for the number of decimal places:
 (setq uprec (getint "Label precision: "))

 ; Ask the user to pick a point in the drawing:
 (setq xyz (getpoint "Pick point: "))

 ; Separate 3D point into individual x,y,z-values:
 (setq ptx (car xyz)
 pty (cadr xyz)
 ptz (caddr xyz)
)

 ; Truncate values:
 (setq ptx (rtos ptx 2 uprec)
 pty (rtos pty 2 uprec)
 ptz (rtos ptz 2 uprec)
)

 ; Recombine individual values into a 3D point:
 (setq xyz1 (strcat ptx ", " pty ", " ptz))

 ; Place text:
 (command "text" xyz 200 0 xyz1)

)

16. 	Save	the	file	as	label.lsp,	then	load	the	LISP	routine	into	BricsCAD	with:
 : (load "label")
 "C:LABEL"

 21 Programming with LISP 393

17.		 Run	the	routine,	and	respond	to	the	prompts:
 : label
 Label precision: 1
 Pick point: (Pick a point.)
 text Justify.../<Start point>:
 Height of text <200.0000>: 200
 Rotation angle of text <0>: 0
 Text: 5012.3, 773.2, 0.0
 :

Saving Data to Files

In the previous tutorial, we begin to worry about user interface enhancements. What started out
as two lines of code has now bulged out into 23. In this tutorial, we learn how to fight feature bloat
(more later), and add the ability to save data to a file.

A reader wrote me with this wish list item: “The LISP file comes in very handy with some of the
programs I use, but I would like to be able to save the data collected on the x,y,z-coordinates in a
text file.”

Saving the data to file is easily done with the open, write-line, and close functions. Let’s take a
look at how to do this. Dealing with files in LISP is simpler than for most programming languages
because LISP has very weak file access functions. All it can do is read and write ASCII files in se-
quential order; LISP cannot deal with binary files nor can it access data in random order.

THE THREE STEPS

There are three steps in writing data to a file:

	 Step	1.	 Open the	file.	

	 Step	2.	 Write the	data	to	the	file.	

 Step	3.	 Close the	file.

Step 1: Open the File
LISP has the open function for opening files. The function lets you open files for one of three pur-
poses: (1) read data from the file; (2) write data to the file; or (3) append data to the file. You must
choose one of these at a time; LISP cannot do all three at once.

In all cases, LISP takes care of creating the file if it does not already exist. Reading data is easy enough
to understand, but what’s the difference between “writing” and “appending” data?

•	 When	I	ask	BricsCAD	to	open	a	file	to	write,	all	existing	data	in	that	file	is	erased,	and	then	the	new	data	is	

added.	

•	 When	I	ask	BricsCAD	to	open	a	file	to	append,	the	new	data	is	added to	the	end	of	the	existing	data.

394 Customizing BricsCAD V19

For our purpose, we want to keep adding data to the file, so choose append mode. The LISP code
looks like this:
(setq FIL (open "xyzdata.txt" "a"))

Here you are setting something (through setq) equal to a variable named FIL. What is it? In pretty
much all programming languages, we don’t deal with the filename directly, but instead deal with
a file descriptor. This is a name (some sequence of letters and numbers) to which the operating
system assigns the filename. Now that you have the file descriptor stored in variable FIL, you work
with FIL, not the filename, which I have decided to call xyzdata.txt.

The final “a” tells LISP you want to open xyzdata.txt for appending data. The options for the open
function are:

Option Comment

"a" Appends data to end of file.
"w" Writes data to file (erase existing data).
"r" Reads data from file.

Step 2: Write Data to the File
To write data to files, use the write-line function. This function writes one line of data at a time.
(Another function, the write function, writes single characters to files.) The code looks like this:
(write-line xyz1 fil)

You cannot, however, just write raw data to the file because it would look like three decimal points
and a lot of digits, like this:
8.15483.27520.0000

Most software is able to read data with commas separating numbers, like this:
8.1548, 3.2752, 0.0000

That includes spreadsheets, database programs, and even some word processing software. I tell
these programs that when they read the data, they should consider the comma to be a separator
and not a comma. In that way, the spreadsheet program places each number in its own cell. With
each number in its own cell, I can manipulate the data. For this reason, you need code that formats
the data.

Fortunately, you’ve done that already. Last tutorial, you used the strcat function along with the cdr,
cadr, and caddr functions to separate the x, y, and z components of the coordinate triplet. So you
can reuse the code, which looks like this:
(setq ptx (car xyz)
 pty (cadr xyz)
 ptz (caddr xyz)
)
(setq xyz1 (strcat ptx ", " pty ", " ptz))

The strcat function places the commas between the coordinate values.

 21 Programming with LISP 395

Step 3: Close the File
Finally, for good housekeeping purposes, close the file. BricsCAD will automatically close the file for
you if you forget, but a good programmers clean up after themselves. Closing the file is as simple as:
(close fil)

PUTTING IT TOGETHER

Add the code for opening, formatting, writing, and closing to the lable.lsp program:
(defun c:label (/ xyz xyz1 uprec ptx pty ptz)
 (setq uprec (getint “Label precision: “))
 (setq xyz (getpoint “Pick point: “))
 (setq ptx (car xyz)
 pty (cadr xyz)
 ptz (caddr xyz)
)

 ; Format the x,y,z coordinates:
 (setq ptx (rtos ptx 2 uprec)
 pty (rtos pty 2 uprec)
 ptz (rtos ptz 2 uprec)
)

; Add commas between the three coordinates:
 (setq xyz1 (strcat ptx “, “ pty “, “ ptz))

 ; Write coordinates to the drawing:
 (command “text” xyz 200 0 xyz1)

 ; Open the data file for appending:
 (setq fil (open “xyzdata.txt” “a”))

 ; Write the line of data to the file:
 (write-line xyz1 fil)

 ; Close the file:
 (close fil)

)

Using a text editor, such as Notepad, make the additions (shown in boldface above) to your copy
of lable.lsp. Load it into BricsCAD with the load function:
: (load "label")

And run the program by entering Label at the ‘:’ prompt:
: label
Label precision: 4
Pick point: (Pick a point.)

As you pick points on the screen, the routine labels the picked points, but also writes the 3D point
data to file. After a while, this is what the data file looks something like this:
8.1548, 3.2752, 0.0000
7.0856, 4.4883, 0.0000
6.4295, 5.6528, 0.0000
5.5303, 6.7688, 0.0000
5.4331, 8.3215, 0.0000

396 Customizing BricsCAD V19

Wishlist #5: Layers
Let’s take a moment to revisit the wishlist. One wishlist item is to control the layer on which the
text is placed. There are two ways to approach this wishlist item:

•	 The	no-code	method	is	to	set	the	layer	before	starting	the	LISP	function.

•	 The	LISP-code	version	is	to	ask	the	user	for	the	name	of	the	layer,	then	use	the	setvar function	to	set	system	

variable	CLayer	(much	easier	than	using	the	Layer command),	as	follows:

 (setq lname (getstring "Label layer: "))
 (setvar "CLAYER" lname)

Add those two line before the line with the “Pick point” prompt.

Wishlist #6: Text Style
To specify the text style, there are the same two methods. The no-code method is to simply set the
text style before starting the routine. Otherwise, you can write LISP code similar to set the style
with the setvar command, as follows:
(setq tsname (getstring "Label text style: "))
(setvar "TEXTSTYLE" tsname)

Once again, add those two line before the line with the “Pick point” prompt.

By now, you may be noticing that your program is starting to look big. This is called “feature bloat.”
More features, especially in the area of user interface, makes software grow far beyond the size of
its basic algorithm.

TIPS IN USING LISP

To conclude this chapter, here are tips for helping out when you write your LISP functions.

Tip #1. Use an ASCII Text Editor.
LISP code must be written in plain ASCII text — no special characters and no formatting (like bol-
face or color) of the sort that word processors add to the file. When you write LISP code with, say,
Word, then save as a .doc-format file (the default), BricsCAD will simply refuse to load the LISP file,
even when the file extension is .lsp.

In an increasingly Window-ized world, it is harder to find a true ASCII text editor. There is one,
however, supplied free by Microsoft with Windows called Notepad, which you’ll find in the
\windows folder. Do not use Write or WordPad supplied with Windows. While both of these have
an option to save in ASCII, you’re bound to forget sometimes and end up frustrated. Linux provides
the excellent Text Edit (aka gedit) text editor, while Mac has TextEdit.

Almost any other word processor has an option to save text in plain ASCII, but not by default. Word
processors have a number of different terms for what I mean by “pure ASCII format.” Word calls it
“Text Only”; WordPerfect calls it “DOS Text”; WordPad calls it “Text Document”; and Atlantis calls
it “Text Files.” You get the idea.

 21 Programming with LISP 397

Tip #2: Loading LSP Code into BricsCAD
To load the LISP code into BricsCAD, you use the load function. Here’s an example where points.
lsp is the name of the LISP routine:
: (load "points")

You don’t need to type the .lsp extension.

When BricsCAD cannot find points.lsp, you need to specify the folder name by using either a forward
slash or double backslashes — your choice:
: (load "\\BricsCAD\\points")

After you’ve typed this a few times, you’ll find it gets tedious. To solve the problem, write a one-line
LISP routine that reduces the keystrokes, like this:
: (defun c:x () (load "points"))

Now anytime you need to load the points.lsp routine, you just type X and press Enter, as follows:
: x

Under Windows, you could also just drag the .lsp file from the File Manager into BricsCAD. Note
that the code moves one way: from the text editor to BricsCAD; you cannot drag the code from
BricsCAD back to the text editor.

Tip #3: Toggling System Variables
One problem in programming is: How to change a value when you don’t know what the value is?
In BricsCAD, you come across this problem with system variables, many of which are toggles. A
toggle system variable has a value of 0 or 1, indicating that the value is either off (0) or on (1).
For example, system variable SplFrame is by default 0: when turned off, splined polylines do not
display their frame.

No programmer ever assumes that the value of SplFrame is going to be zero just because that’s its
default value. In the case of toggle system variables, there two solutions:

	 (1)	Employ	the	if	function	to	see	if	the	value	is	0	or	1.

	 (2)	Subtract	1,	and	take	the	absolute	value.

Tip #4: Be Neat and Tidy.
Remember, your mother told you to always pick up your things. This problem of setting system
variables applies universally. When your LISP routine changes values of system variables, it must
always set them back to the way they were before the routine began running.

Many programmers write a set of generic functions that save the current settings at the beginning
of the routine, carries out the changes, and then restores the saved values at the end of the routine.
Here’s a code fragment that shows this, where the original value of SplFrame is stored in variable
SplVar using getvar, and then restored with setvar:
(setq splvar (getvar "splframe"))
...
(setvar "splframe" splvar)

398 Customizing BricsCAD V19

Tip #5: UPPER vs. lowercase
In (almost) all cases, LISP doesn’t care if you use UPPERCASE or lowercase for writing the code.
For legibility, there are some conventions:

•	 LISP	function	names	in	all	lowercase.

•	 Your	function	names	in	Mixed	Case.

•	 BricsCAD	variables	and	command	names	in	all	UPPERCASE.

As I said, LISP doesn’t care, and converts everything into uppercase in any case. It also strips out all
comments, excess white space, tabs, and return characters. The exception is text in quote marks,
such as prompts, which are left as is.

There are two exception where LISP does care: when you are working with escape codes and the
letter T.

Escape codes are used in text strings, and must remain lowercase. For example, \e is the escape
character (equivalent to ASCII 27) and \t is the tab character. Note that they use backslashes; it is
for this reason that you cannot use the backslash for separating folders names back in Tip #2. LISP
would think you were typing an escape code.

And some functions use the letter T as a flag. It must remain uppercase.

Tip # 6: Quotation Marks as Quotation Marks
As we have seen, LISP uses quotation marks (") for strings. Thus, you cannot use a quotation mark
as for displaying quotation marks and inches, such as displaying 25 inches as 25".

The workaround is to use the escape codes mentioned above in Tip #5, specifically the octal code
equivalent for the ASCII character for the quotation mark. Sound complicated? It is. But all you need
to know is 042. Here’s how it works:

First, assign the strings to variables, as follows:
(setq disttxt "The length is ")
(setq distval 25)
(setq qumark "\042")

Notice how I assigned octal 042 to variable qumark. The backslash tells LISP the numbers follow-
ing are in octal. Octal, by the way, is half of hexadecimal: 0 1 2 3 4 5 6 7 10 11 12 ... 16 17 20 21 ...

Then concatenate the three strings together with the strcat function:
(strcat distxt distval qumark)

To produce the prompt:
The length is 25"

 21 Programming with LISP 399

Tip #7: Tabs and Quotation Marks
Vijay Katkar is writing code for a dialog box with a list box. He told me, “I want to display strings in
it — just like the dialog box displayed by the Layer command. I am able to concatenate the values
and print the strings but there is no vertical alignment, since the strings are of different lengths. I
tried using the tab metacharacter (\t) in the string but it prints the literal ‘\t’ in the list box. Is there
any way I can get around this problem?”

I recall a similar problem: How to display quotation marks or the inches symbol within a text string?
For example, I have a line of LISP code that I want to print out as:
The diameter is 2.54"

Normally, I cannot use the quotation (") character in a string. LISP uses the quotation as its string
delimiter to mark the beginning and ending of the string. In the following line of code:
(prompt "The diameter is 2.54"")

LISP sees the first quotation mark as the start of the string, the second quotation as the end of the
string, and the third quotation mark as an error. The solution is the \nnn metacharacter. This lets me
insert any ASCII character, including special characters, such as tab, escape, and quotation marks.
The workaround here is to use the ASCII code for the quotation mark, \042, like this:
(prompt "The diameter is 2.54\042")

Similarly, Vijay needs to use the \009 metacharacter to space the text in his dialog box. And, in fact,
that worked: “According to what you had told me, I used the same and it worked.”

400 Customizing BricsCAD V19

Notes

Designing Dialog Boxes
with DCL

DCL allows programmers to create custom dialog boxes for LISP routines. Short for "dialog
control language," DCL was added to BricsCAD in V8 for compatibility with AutoCAD.

DCL is a structured language used to describe the elements (called "tiles") that make up dialog
boxes. Tiles includes edit boxes, list boxes, radio buttons, image tiles, and title bars. Each of these
has one or more attributes, such as its position, background color, and the action it performs.

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Learning the history of DCL

• Finding out the makeup of dialog boxes

• Coding your first dialog box

• Using LISP code to load and run dialog boxes

• Finding examples of DCL coding

• Debugging DCL

• Discovering additional DCL learning resources

CHAPTER 22

402 Customizing BricsCAD V19

A QUICK HISTORY OF DCL

Autodesk first added DCL (short for "dialog control language") as an undocumented feature to AutoCAD Release 11
for Windows. It was designed to for creating platform-independent dialog boxes. At that time, Autodesk produced ver-
sions of AutoCAD for "every viable engineering platform," which included DOS, Windows, Unix, Macintosh, and OS/2,
and DCL was part of a project code-named "Proteus," whose aim was to make AutoCAD work and look identical on
every operating system.

As the figures below show, the project was a success. First, here is AutoCAD Release 11’s Drawing Aids dialog box
running on DOS:

And here is the same dialog box in the Windows version of AutoCAD Release 11:

Notice how similar the DOS and Windows dialog boxes look. (The Drawing Aids dialog box is now known as the Op-
tions dialog box.)

By Release 14, however, Proteus became meaningless, because Autodesk chose to support only the Windows operating
system. But DCL continues hangs around as the only way to create dialog boxes with LISP, and Bricsys makes good use
of DCL for its support of Linux, MacOS, and Windows.

 22 Designing Dialog Boxes with DCL 403

Applications written in LISP, SDS, and DRx can make use of DCL for dialog boxes. Menu and toolbar
macros can too, when they link to LISP routines that call the DCL code. (VBA does not use DCL,
because it has its own dialog construction environment.)

Bricsys provides no programming environment to help you create DCL files — it’s hand coding all
the way. That means a text editor such as NotePad in Windows and Text Edit in Linux or Mac will
be your DCL programming environment. Some third-party developers have created DCL develop-
ment tools.

When you want a LISP routine to display a dialog box, you need to write two pieces of code:

•	 Code	in	a	.dcl file	that	defines	the	dialog	box	and	the	functions	of	its	tiles.

•	 Code	in	the	.lsp file	that	loads	the	.dcl file,	and	then	activates	the	tiles.

Working with dialog boxes always involves a pair of files, .dcl and .lsp, with the LISP code control-
ling the dialog box code.

A drawback to DCL is that it cannot create self-modify dialog boxes, such as ones that add or remove
buttons. It can, however, dynamically change the contents of droplists and such.

Label

Label

Centered tile

Button

Popup list

Edit box

Toggle

Ok-Cancel

Default

Invisible
tile

Row

Boxed column

404 Customizing BricsCAD V19

What Dialog Boxes Are Made Of

Dialog boxes can consist of many elements, such as radio buttons, sliders, images, tabs,
and check boxes. These elements are called "tiles." DCL allows you to create many differ-
ent types of elements, but it does not have tiles for every element found in today’s dialog
boxes. That’s because DCL hasn’t been upgraded since it was introduced some 20 years
ago. (Those elements not possible with DCL can be created through VBA.)

The figure below illustrates many of the dialog box elements that are possible with DCL,
along with some names of specific DCL tiles.

Most tiles are visible, but some are invisible, such as the row and column tiles highlighted
in the figure above by blue rectangles:

HOW DCL OPERATES

The two pieces of code that are required to make dialog boxes operate are (a) DCL code
that specifies the layout of tiles and their attributes in the dialog box, and (b) LISP code
that activates and controls the dialog box.

You do not need to specify the overall size of the dialog box; BricsCAD takes care of that
by automatically sizing it. The default is that tiles are stacked in columns; you only need to
specify when tiles should be aligned in a row.

Some back and forth is permitted while running DCL and LISP; this is known as "callbacks."
Callbacks are used to provide names to file dialog boxes, to gray out certain buttons, to
change the content of popup lists (droplists), and so on.

This chapter shows you how to write DCL with LISP code. Appendix B provides you with
a comprehensive reference to all DCL tiles, their attributes, and related LISP functions.

Your First DCL File

Before writing any code for a dialog box, it is helpful to plan out the tiles. Where will the
buttons, droplists, and text entry boxes go in the dialog box? It’s a good thing to get your
pencil, and then sketch your ideas on paper.

For this tutorial, you will create a dialog box that displays the values stored in these system
variables:

	 LastPoint —	stores	the	last	3D	point	entered	in	the	drawing.

	 LastAngle —	stores	the	angle	defined	by	the	last	two	points	entered.

	 LastPrompt —	stores	the	last	text	entered	at	the	command	line.

 22 Designing Dialog Boxes with DCL 405

Take a moment to think about the design of the dialog box. It would have a title that explains the
purpose of the dialog box. It probably should have three lines of text that report the name and value
of each system variable. And it should have an OK button to exit the dialog box.

It might look like this:

Title of the dialog box

OK button to exit dialog box

Names of system variables
and their values

DCL PROGRAMMING STRUCTURE

The programming structure of this dialog box looks like this:
 Start the dialog box definition:

 • Specify the dialog box’s title

 • Specify a column:

 System variable LastPoint and its 3D coordinates

 System variable LastAngle and its angle

 System variable LastPrompt and its text

 • Locate the OK button

 End the dialog box definition.

In this first tutorial, you will write just enough code to display the dialog box and its OK button. In
the tutorials that come later, you add the bells and whistles.

Start Dialog Box Definition
The content of every .dcl file begins with a name attribute. This is the name by which the dialog
code is called later by the associated LISP routine. The name function looks like this:
 name: dialog {

Like LISP, an open brace needs a closing brace to signal the end of a dialog box definition:
 }

Between the two braces you write all the code the defines the look of the dialog box.

406 Customizing BricsCAD V19

For this tutorial, name the dialog box "lastInput," as follows:
 lastInput: dialog {
 }

DCL names are case-sensitive, so "lastInput" is not the same as "LastINPUT" or "lastinput."

Dialog Box Title
The text for the dialog box’s title bar is specified by the label property, as follows:
 name: dialog {
 label = "Dialog box title";
 }

Label this dialog box "Last Input" like this:
 lastInput: dialog {
 label = "Last Input";
 }

The title text needs to be surrounded by quotation marks ("). The label property must be termi-
nated with a semicolon (;). And it’s helpful to indent the code to make it readable.

OK Button
Every dialog box needs an exit button, at least an OK. (Windows places a default X button in the
upper-right corner of every dialog box, which also works to exit dialog boxes made with DCL!)

Buttons are defined with the button property, followed by the properties of the button enclosed
in braces:
 : button {
 }

Because dialog boxes can have multiple buttons, every button must be identified by a property
called the "key." The key is how LISP gives instructions to buttons. Use the key attribute to identify

QUICK SUMMARY OF DCL METACHARACTERS

DCL Metacharacter Meaning

// (slash-slash) Indicates a comment line .
/* (slash-asterisk) Starts comment section .
*/ (asterisk-slash) Ends comment section .
: 1 (colon) Starts a tile definition. Predefined tiles, like spacer, do not use the colon.
{ (brace) Starts dialog and tile attributes .
 (space) Separates symbols .
= (equals) Defines attribute values.
"" (straight quotation) Encloses text attributes .
; 2 (semi-colon) Ends attribute definition. Every attribute must end with a semi-colon.
} (brace) Ends tile and dialog attributes .

 22 Designing Dialog Boxes with DCL 407

this OK button as "okButton," as follows:
 key = "okButton";

The button needs to display a label for users to read. This is an OK button, so label it " OK " with
the label attribute, as follows:
 label = " OK ";

Let’s put all of these together. The code added for the OK button is shown here in color, with the
key, label, and is_default attributes. (See below for info about the default attribute.) We have a but-
ton identified as "okButton," sporting the label "OK," and is set at the default tile.
 lastInput: dialog {
 label = "Last Input";
 : button {
 key = "okButton";
 label = " OK ";
 is_default = true;
 }
 }

TIP	 The	DCL	code	for	the	OK button	is	like	a	subroutine.	The	same	code	can	be	reused	any	time	a	
dialog	box	needs	an	OK button,	which	is	pretty	much	all	the	time.	Later,	you	will	see	how	to	create	subrou-
tines	with	DCL	code.

The Default Tile
To make life easier for users, one tile of a dialog box is always made the default tile. Users need
only press Enter to activate the default tile. Dialog boxes highlight the default tile in some way,
such as with a dashed or colored outline. User can press Tab to move the default focus (currently
highlighted tile) to other areas of the dialog box.

A tile is made the default with the is_default attribute, as follows:
 is_default = true;

Testing DCL Code

You have enough DCL code to test it now, which lets you see how the dialog box is developing. To
test the code, take these steps:

1.	 Open	Notepad,	Text	Edit,	or	another	ASCII	text	editor.

2.	 Enter	the	DCL	code	we	developed	earlier:

408 Customizing BricsCAD V19

LISP CODE TO LOAD AND RUN DIALOG BOXES

The following LISP code is what you use to load, run, and exit the lastInput.dcl dialog box definition file:

(defun C:xx ()

 (setq dlg-id (load_dialog "c:\\lastInput"))

 (new_dialog "lastInput" dlg-id)

 (action_tile "accept" "(done_dialog)")

 (start_dialog)

 (unload_dialog dlg-id)

)

To see what the LISP code means, let’s take it apart.

The function is defined as "xx" with LISP’s defun function. Programming = debugging, so I like to use an easy-to-enter
name for the LISP routine, like "xx."

(defun C:xx ()

The lastInput.dcl file is loaded with the load_dialog function. There is no need to specify the ".dcl" extension, because
this is the sole purpose of this function: to load DCL files.

• In Windows, include the name of the drive, C:\\. Recall that LISP requires you to use \\ instead of \
 for separating folder names.

(setq dlg-id (load_dialog "c:\\lastInput"))

• In Linux, leave out the name of the drive:

(setq dlg-id (load_dialog "lastInput"))

DCL files can contain more than one dialog box definition, and so the next step is to use the new_dialog function to tell
BricsCAD which one you want to access. In this case, there is just the one, "lastInput."

(new_dialog "lastInput" dlg-id)

The dialog box contains a button named "okButton," and its purpose is defined by LISP — not DCL! Here you use the
action_tile function to assign an action to the "okButton" tile. The button’s purpose in life is to execute the done_dialog
function that exits the dialog box. In short, click OK to exit the dialog box. . You can read this as follows: "the action for
the tile named okButton is ...".

(action_tile "okButton" "(done_dialog)")

After all these preliminaries, the big moment arrives. The start_dialog function launches the dialog box, and waits then
for you to click its button.

(start_dialog)

As neat programmers, we unload the dialog box from memory with the unload_dialog function.

(unload_dialog dlg-id)

And a final parenthesis ends the xx function.

)

 22 Designing Dialog Boxes with DCL 409

	 Important:	Ensure	that	this	DCL	file	and	the	LSP	file	use	straight	quotation	marks	that	look	like	this:	".	If	they	

contain	curly	quotation	marks	(“	or	”),	the	routines	will	fail.	LISP	will	complain,	"error:	bad	argument	type	

<NIL>;	expected	<STRING>"	while	DCL	will	put	up	a	dialog	box	complaining,	syntax error: unexpected "".

3.	 Save	the	file	as	lastinput.dcl.	So	that	the	LISP xx.lsp	routine	can	find	it	easily,	save	the	file	in	a	top	level	folder:	

•	 In	Windows,	save	the	DCL	file	to	the	C:\	drive.

•	 In	Linux	and	Mac,	save	the	DCL	file	to	your	home	folder.	For	example,	I	log	in	to	Linux	with	the	user	

name	of	"ralphg,"	so	I	saved	the	file	in	the	ralphg	folder.

4.	 Now,	open	a	new	file,	and	then	enter	the	LISP	code	described	in	the	boxed	text	on	the	following	page:	"LISP	

Code	to	Load	and	Run	Dialog	Boxes."

5.	 Save	the	file	as	xx.lsp,	also	in	the	same	folder	as	the	DCL	file.

6.		 Switch	to	BricsCAD,	and	then	open	the	xx.lsp	file	in	BricsCAD:

•	 In	Windows,	use	Explorer	to	drag	the	xx.lsp	file	into	the	BricsCAD	drawing	window.	(Dragging	the	file	is	

a	lot	faster	than	entering	the	AppLoad command	or	using	the	LISP	load function!)

•	 In	Linux,	you	have	to	use	the	load	function,	because	files	cannot	be	dragged	into	the	Linux	version	of	

BricsCAD.	Enter	the	following	at	the	‘:’	prompt:
 : (load "xx")

7.	 Type	xx to	run	the	routine,	which	then	loads	the	dialog	box:
 : xx

	 Notice	that	the	dialog	box	appears!	Well,	it	should,	if	you	haven’t	made	any	coding	errors.	

Left: Dialog box in Windows 7.

Right: Dialog box in Linux Mint.

8.	 Click	OK to	exit	the	dialog	box.	

Here is a map of how the DCL code created the dialog box:

Label = “Last Input”;

: button { key = “okButton”;}

Label = “ OK “;

X button provided by Windows

Is_default = true;

410 Customizing BricsCAD V19

DISPLAYING DATA FROM SYSTEM VARIABLES

The basic structure of the dialog box is in place: the label and the OK button. Now it is time to add
the data we want displayed by the system variables.

The data from the sysvars will look like this in the dialog box:
 Last angle: 45

 Last point: 1,2,3

 Last prompt: Line

I show the static text in color. It never changes. This text acts like a prompt to tell users what the
numbers mean.

The black text is variable; its display changes, and depends on the value of the associated sysvar.

The Text tile is the one that displays text in dialog boxes, and its code will look like this:
 : text {
 label = "Last angle: ";
 key = "lastAngle";
 }

Are you able to recognize the attributes of this text tile?

Begin the text with this tile:
 : text {

Next, the label attribute provides the prompt, ‘Last angle: ’.
 label = "Last angle: ";

The key attribute identifies the text tile as "lastAngle."
 key = "lastAngle";

Finally, the text tile is closed with the brace.
 }

TIP	 Text tiles	can	have	the	following	attributes,	as	described	fully	by	the	DCL	reference	later	in	this	
ebook:	
	 •	 alignment		
	 •	 fixed_height		
	 •	 fixed_width		
	 •	 height		
	 •	 is_bold		
	 •	 key		
	 •	 label		
	 •	 value		
	 •	 width

 22 Designing Dialog Boxes with DCL 411

Add the highlighted code to the DCL file...

...and then run the xx.lsp routine again. Notice that the dialog box now displays the ‘Last angle:’ text:

The next step is to display the value stored by the LastAngle system variable. Add a second text tile:
 : text {
 value = "";
 key = "lastAngleData";
 }

The value of this tile is initially blank, because it has no label and no value. To complete the text
tile, we need to use a LISP function that extracts the value from the LastAngle system variable, and
then shoves it into the dialog box.

The link between the LISP code and the DCL file is with the key, which is named here "lastAngle-
Data." (I’ll show you the LISP code a bit later on.) Now the DCL file looks like this, with the new
code shown in color. You can copy this code and paste it into the text editor.
lastInput: dialog {
 label = "Last Input";
 : text {
 label = "Last angle: ";
 key = "lastAngle";
 }

 : text {
 value = "";
 key = "lastAngleData";
 }

 : button {
 key = "okButton";
 label = "OK";
 is_default = true;
 }
}

(If you were to run this DCL code now, the dialog box would look no different. It still needs LISP to
tell it the value of the last angle. This is coming up next.)

412 Customizing BricsCAD V19

ADDING THE COMPLIMENTARY LISP CODE

Writing DCL code is always only half the job. The other half is to write the complementary code in
LISP. Extracting the value from LastAngle take these two steps:

	 Step 1:	Use	the	getvar function	to	access	the	value	of	sysvar	LastAngle,	and	then	store	the	gotten	value	in	

variable	lang (short	for	"last	angle")	with	the	setq	function,	as	follows:

 (setq lang (getvar "LastAngle"))

	 Step 2: Use	the	set_tile	function	to	set	the	value	of	lang to	the	"lastAngleData"	tile:	

 (set_tile "lastAngleData" (rtos lang 2 2))

TIP	 Tiles	work	only	with	text,	no	numbers.	However,	the	value	of	LastAngle	is	a	number,	so	you	
have	to	convert	it	to	text.	This	is	done	with	the	rtos function:	
	 (rtos lang 2 2)) 	
Here,	I	am	converting	the	real	number	to	a	string	(a.k.a.	text)	using	mode	2	(decimal)	and	precision	2	(two	
decimal	places).	

With the new lines of code shown in color, the LSP file now looks like this:
(defun C:xx ()
 (setq dlg-id (load_dialog "c:\\lastInput"))
 (new_dialog "lastInput" dlg-id)
 (setq lang (getvar "lastangle"))
 (set_tile "lastAngleData" (rtos lang 2 2))
 (action_tile "okButton" "(done_dialog)")
 (start_dialog)
 (unload_dialog dlg-id)
)

Save the .dcl and .lsp files, and then reload and run xx.lsp in BricsCAD.

The dialog box now looks like this:

CLUSTERING TEXT

Hmmm... the two pieces of text are stacked on top of one another, and that is a problem. They
should be horizontal. The text is stacked vertically, because DCL places tiles in columns by default.

The solution is to force the two text tiles to appear next to each other with the Row tile:
 : row {
 : text {
 label = "Last angle: ";
 key = "lastAngle";
 }

 : text {
 value = "";

 22 Designing Dialog Boxes with DCL 413

 key = "lastAngleData";
 }
 }

Modify the DCL file by adding the row tile, and then rerun the LISP file. The result should look
better, like this:

Now that the last-angle text looks proper, you can copy and paste its code for use by the other two
lines, and then make suitable modifications. The changes you need to make are shown below in color:
 : row {
 : text {
 label = "Last point: ";
 key = "lastPoint";
 }

 : text {
 value = "";
 key = "lastPointData";
 }
 }

And for final prompt:
 : row {
 : text {
 label = "Last prompt: ";
 key = "lastPrompt";
 }

 : text {
 value = "";
 key = "lastPromptData";
 }
 }

Running xx.lsp gives the dialog box all three prompts, but data is missing from the two new ones:

Supplying the Variable Text
The data is supplied by LISP code. Here we look at how to handle 3D coordinates and text.

Recall that LISP returns the value of points as list of three numbers, like this:
 (1.0000 2.0000 3.0000)

The numbers represent the x, y, and z coordinates, respectively. We need to convert the list of three
numbers to a string — why does it have to be so hard?! Use the following code, which assumes that

414 Customizing BricsCAD V19

variable lpt contains (1.0000 2.0000 3.0000):
 (car lpt)

The car function extracts the x-coordinate from the list as a real number, such as 1.0000. Similarly:
 (cadr lpt)

 (caddr lpt)

The cadr and caddr functions extract the y (2.0000) and z (3.0000) coordinates, respectively. To
convert the real numbers to strings, use the rtos function, as follows:
 (rtos (car lpt))

 (rtos (cadr lpt))

 (rtos (caddr lpt))

And then to combine the three individual strings into one string, use the strcat (string concatena-
tion) function, as follows:
 (strcat
 (rtos (car lpt))
 (rtos (cadr lpt))
 (rtos (caddr lpt))
)

This code displays 1.000 2.000 3.000. It would be a nice touch to put commas between the numbers:
 (strcat
 (rtos (car lpt)) ","
 (rtos (cadr lpt)) ","
 (rtos (caddr lpt))
)

Put both lines of code together, and we arrive at the LISP needed to implant the value of the Last-
Point system variable in the dialog box:
 (setq lpt (getvar "lastpoint"))
 (set_tile "lastPointData" (strcat (rtos (car lpt)) "," (rtos (cadr lpt)) "," (rtos
 (caddr lpt))))

Add the code to the xx.lsp, and then run it in BricsCAD to see the result.

Leaving Room for Variable Text
Oops, the numbers are cut off. BricsCAD sizes the dialog box is sized before the LISP code inserts
the data, so it doesn’t know that the dialog box needs to be bigger to accommodate the x,y,z coor-
dinates — which can run to many characters in length.

 22 Designing Dialog Boxes with DCL 415

The solution is to use the width attribute for each text tiles, like this:
 : text {
 value = "";
 key = "lastAngleData";
 width = 33;
 }

When added to the DCL file, the result looks like this:

FIXING THE BUTTON WIDTH

Oops. Now the OK button is too wide. To make it narrower (i.e., fix its width), use the fixed_width
attribute in the DCL file:
 fixed_width = true;

By setting it to true, the button is made only as wide as the label.

Centering the Button
Oops! Now the button is no longer centered. By default, the button is left-justified. To center it, use
the alignment attribute:
 alignment = centered;

Add the new code to the button portion of the DCL file...
 : button {
 key = "okButton";
 label = "OK";
 is_default = true;
 alignment = centered;
 fixed_width = true;
 }

...and then rerun the xx.lsp file to see that the properly-sized OK button is centered.

416 Customizing BricsCAD V19

TESTING THE DIALOG BOX

It’s always a good idea to test the dialog box under a number of situations. Use the Line command
to draw a few lines. This action changes the values of the three sysvars. Re-run the xx.lsp routine.
The values displayed by the dialog box should be different.

Defining the Command
So far, you’ve been running xx.lsp to develop and test the dialog box. Now that it’s running properly,
you should change the "xx" name to one that is more descriptive. Rename the LISP file as last.lsp,
and change the function name inside to C:last, and make the variables local, as follows:
(defun c:last (/ dlg-id lang lpt lcmd)
 (setq dlg-id (load_dialog "c:\\lastInput"))
 (new_dialog "lastInput" dlg-id)
 (setq lang (getvar "lastangle"))
 (set_tile "lastAngleData" (rtos lang))
 (setq lpt (getvar "lastpoint"))
 (set_tile "lastPointData" (strcat (rtos (car lpt)) "," (rtos (cadr lpt)) ","
 (rtos (caddr lpt))))
 (setq lcmd (getvar "lastprompt"))
 (set_tile "lastPromptData" lcmd)
 (action_tile "okButton" "(done_dialog)")
 (start_dialog)
 (unload_dialog dlg-id)
)

The DCL file looks like this, in its entirety:
lastInput: dialog {
 label = "Last Input";
 : row {
 : text {
 label = "Last angle: ";
 key = "lastAngle";
 }

 : text {
 value = "";
 key = "lastAngleData";
 width = 33;
 }
 }

 : row {
 : text {
 label = "Last point: ";
 key = "lastPoint";
 }

 : text {
 value = "";

 22 Designing Dialog Boxes with DCL 417

 key = "lastPointData";

 width = 33;
 }
 }

 : row {
 : text {
 label = "Last prompt: ";
 key = "lastPrompt";
 }

 : text {
 value = "";
 key = "lastPromptData";
 width = 33;
 }
 }

 : button {
 key = "okButton";
 label = "OK";
 is_default = true;
 alignment = centered;
 fixed_width = true;
 }
}

If you would like to have this command loaded automatically each time you start BricsCAD, add
last.lsp to the AppLoad command’s startup list.

418 Customizing BricsCAD V19

Examples of DCL Tiles

With the basic tutorial behind you, let’s take a look at how to code other types of dialog box features.
In this last part of the chapter, we look at how to code the following tiles:

	 Buttons

	 Check	boxes	(toggles)

	 Radio	buttons

	 Clusters	(columns	and	rows)

Recall that two pieces of code are always required: (1) the DCL code that specifies the layout of the
dialog box, and (2) the LISP code that activates the dialog box.

Appendix B provides you with a comprehensive reference to all DCL tiles, their attributes, and
related LISP functions.

BUTTONS

In the preceding tutorial, you coded an OK button that allowed you to exit the dialog box. It turns
out that you don’t need to do the coding, because BricsCAD codes a number of buttons and other
dialog box elements for you. These are found in a file called base.dcl that is normally loaded into
BricsCAD automatically. (The full list is provided in the appendix).

The names of the pre-built tiles are:

Prebuilt Tile Button(s) Displayed

ok_only OK
ok_cancel OK Cancel
ok_cancel_help OK Cancel Help
ok_cancel_help_info OK Cancel Help Info . . .
Ok_Cancel_Help_Errtile OK Cancel Help, plus space for error messages.

Use these prebuilt tiles to ensure a consistent look for your dialog boxes. Here is an example of how
to use these buttons in DCL files:
 ok_only;

It’s just that easy!

Notice that the tile name lacks the traditional colon (:) prefix, but does require the semicolon (;
) terminator.

DCL allows you to create buttons that have labels made of text (button tiles) or images (image_but-
ton tiles).

 22 Designing Dialog Boxes with DCL 419

To indicate that the button opens another dialog box, use an ellipsis (...), such as Info....

In addition to text and image buttons, settings can be changed with check boxes (toggle tiles) and
radio buttons (radio_button tiles), as described next.

Making Buttons Work
OK and Cancel are easy, because their functions are already defined. It’s one thing to populate a
dialog box with buttons; it’s another to have them execute commands.

Let’s see how to make buttons execute commands. In the tutorial, you create a dialog box with Plot
and Preview buttons. The figure below shows how it will look in Linux; it looks similar in Windows.

The purpose of the Plot button is to execute the Plot command, and of Preview button to execute
the Preview command.

The easy solution would be to add an action attribute to each button to execute a LISP function,
such as (command "plot"). But we cannot, because DCL does not allow the highly-useful com-
mand function to be used in the action attribute!

The key to solving the problem is the key attribute. It gives buttons identifying names by which
LISP functions can reference them, such as:
 key = "plot";

Then, over in the LISP file, you use the action_tile function to execute the Plot command. Well,
not quite. It has the same restriction against use of the command function, so you must approach
this indirectly by getting action_tile to refer to a second LISP routine, such as (action_tile "plot"
"(cmd-plot)").

But even this will not work, because you need your custom dialog box to disappear from the screen,
and be replaced by the Plot dialog box. The solution is to become even more indirect:
 (action_tile "plot" "(setq nextDlg 1) (done_dialog)")

 "plot" —	identifies	the	Plot	button	through	its	key,	"plot".

 (setq nextDlg 1) —	records	that	the	user	clicked	the	Plot	button	for	further	processing	later	on.	

	 (done_dialog)	—	closes	the	dialog	box.

This is done twice, once each when the user clicks the Plot button or the Preview button. The Pre-
view button’s code is similar; changes are shown in boldface:
 (action_tile "preview" "(setq nextDlg 2) (done_dialog)")

420 Customizing BricsCAD V19

Then, you need some code that decides what to do when nextDlg is set to 1 or 2:
 (if (= nextDlg 1) (cmd-plot))

 (if (= nextDlg 2) (cmd-preview))

When nextDlg = 1, then the following subroutine is run:
 (defun cmd-plot ()
 (command "print")
)

The purpose of the Print command is to force BricsCAD to display the dialog box of the Plot com-
mand; otherwise, the prompts are displayed at the command line.

If you prefer the prompts at the command line, then change the code:
 (defun cmd-plot ()
 (command "plot")
)

When nextDlg = 2, then the following subroutine is run instead:
 (defun cmd-preview ()
 (command "preview")
)

With the planning behind us, let’s look at all the code. First, in the x.dcl file, you add the key attributes
to each button. The code that relates to the Plot button is shown boldface, while Preview-related
code is shown in color:
 x: dialog { label = "Plot";
 : row {
 : button { label = "Plot"; mnemonic = "P"; key = plot; }
 : button { label = "Preview"; mnemonic = "v"; key = "preview"; }
 cancel_button;
 } }

Second, in the xx.lsp file, you add the code that executes the Plot and Preview commands.
 (defun c:xx (/)
 (setq dlg-id (load_dialog "c:\\x"))
 (new_dialog "x" dlg-id)
 (action_tile "plot" "(setq nextDlg 1) (done_dialog)")
 (action_tile "preview" "(setq nextDlg 2) (done_dialog)")
 (start_dialog)
 (unload_dialog dlg-id)
 (if (= nextDlg 1) (cmd-plot))
 (if (= nextDlg 2) (cmd-preview))
)

 (defun cmd-plot ()
 (command "print")
)

 (defun cmd-preview ()
 (command "preview")
)

 22 Designing Dialog Boxes with DCL 421

In Linux, remember to remove the “c:\\” so that the load_dialog line reads as follows:
 (setq dlg-id (load_dialog "x"))

When the dialog box appears, click each button to ensure it executes the related command.

Check Boxes
Check boxes allow you to have one or more options turned on. They contrast to radio buttons, which
limit you to a single choice. Check boxes are created by the toggle tile.

Top: Radio buttons made with the radio tile.
Above: Check boxes made with the toggle tile

In this tutorial, you create a check box that changes the shape of point objects. This is accomplished
by changing the value of the PdMode system variable. Yes, there is the DdPType command that
does the same thing, but this is a difference approach, as you will see.

The PdMode system variable can take these values:

PdMode Meaning

0 Dot (.)
1 Nothing
2 Plus (+)
3 Cross (x)
4 Short vertical line (|)
32 Circle
64 Square

In addition, these numbers can be combined through addition. For example, 34 (32 + 2) adds a
circle (32) to the plus symbol (2).

Left to right: PdMode = 32, 33, and 34.

Here is a peculiarity to points to be aware of: 32 actually a circle with dot (32 + 0), because 0 draws
a dot. In comparison, 33 (32 + 1) is the circle alone, because the 1 displays nothing!

422 Customizing BricsCAD V19

Let’s see how to create a dialog box that lets us select combinations of the plus, circle, and square
point symbols. How about a dialog box that looks something like this...

x: dialog { label = "Point Style";

: column { label = "Select a point style: " ;

: toggle { key = "plus" ; label = "Plus" ; value = "1" ; }

: toggle { key = "circle" ; label = "Circle" ; }

: toggle { key = "square" ; label = "Square" ; }

ok_cancel;

Here is the code needed to generate the dialog box:
 x: dialog { label = "Point Style";
 : column { label = "Select a point style: " ;
 : toggle { key = "plus" ; label = "Plus" ; value = "1" ; }
 : toggle { key = "circle" ; label = "Circle" ; }
 : toggle { key = "square" ; label = "Square" ; }
 }
 ok_cancel;
 }

Notice that value = "1" turns on the Plus option (to show the check mark), making it the default value.

Now let’s write the LISP file to make the dialog box work. Something as simple as (action_tile "plus"
"(setvar "pdmode" 2)") doesn’t work, because the user might want to select more than one option
— which is the whole point to toggles. You need the code to go through three steps:

	 Step 1:	Read	which	option(s)	users	have	checked.

	 Step 2:	Add	up	the	setting(s).

 Step 3:	Set	PdMode to	show	the	desired	point	style.	

Let’s	implement	it:

1.	 To	read	user	input	from	dialog	boxes,	employ	LISP’s	$value variable	for	the	Plus	toggle:
 (action_tile "plus" "(setq plusVar $value)")

	 Repeat	the	code	for	the	other	two	toggles,	Circle	and	Square:
 (action_tile "circle" "(setq circleVar $value)")
 (action_tile "square"(setq squareVar $value)")

2.	 The	$value	variable	contains	just	1s	and	0s.	Later,	we	will	use	a	lookup	table	to	convert	the	1s	and	0s	into	the	

values	expected	by	PdMode.	For	instance,	if	Plus	is	selected	("1"),	then	PdMode	expects	a	value	of	2.	The	

lookup	table	uses	the	if function	to	correct	the	numbers,	as	follows:
 (if (= plusVar "1") (setq plusNum 2) (setq plusNum 0))

	 This	can	be	read	as:

	 	 If plusVar = 1, then set plusNum = 2;

 otherwise, set plusNum = 0.

	 Repeat	the	lookup	code	for	the	other	two	toggles,	Circle	and	Square:
 (if (= squareVar "1") (setq squareNum 64) (setq squareNum 0))
 (if (= circleVar "1") (setq circleNum 32) (setq circleNum 0))

 22 Designing Dialog Boxes with DCL 423

TIP	 The	$value	retrieved	by	get_tile	is	actually	a	string,	like	"1".	The	PdMode system	variable,	how-
ever,	expects	an	integer.	Thus,	the	lookup	table	performs	a	secondary	function	of	converting	strings	to	
integers.	

 With the values set to what PdMode expects, add them up with the + function:
 (setq vars (+ plusNum circleNum squareNum))

3.	 To	change	the	value	of	PdMode,	you	employ	LISP’s	setvar function,	like	this:
 (setvar "pdmode" vars)

Here is all of the LISP code:
 (defun c:xx (/)
 (setq dlg-id (load_dialog "c:\\x"))
 (new_dialog "x" dlg-id)

;; Get the current values from each toggle tile:

 (setq plusVar (get_tile "plus"))
 (setq circleVar (get_tile "circle"))
 (setq squareVar (get_tile "square"))

;; See which toggles the user clicks:

 (action_tile "plus" "(setq plusVar $value)")
 (action_tile "circle" "(setq circleVar $value)")
 (action_tile "square" "(setq squareVar $value)")

 (start_dialog)
 (unload_dialog dlg-id)

;; Lookup table converts "0"/"1" strings to the correct integers:

 (if (= plusVar "1") (setq plusNum 2) (setq plusNum 0))
 (if (= circleVar "1") (setq circleNum 32) (setq circleNum 0))
 (if (= squareVar "1") (setq squareNum 64) (setq squareNum 0))

;; Add up the integers, and then change system variable:

 (setq vars (+ plusNum circleNum squareNum))
 (setvar "pdmode" vars)
)

Radio Buttons
Radio buttons are easier to code than toggles, because only one can be active at a time.

In this tutorial, you create a dialog box that uses radio buttons to change the isoplane. The dialog
box changes the value of the SnapIsoPair system variable, which takes the following values:

SnapIsoPair Meaning

0 Left isoplane (default) .
1 Top isoplane .
2 Right isoplane .

424 Customizing BricsCAD V19

To make a dialog box that looks like this...

x: dialog { label = "Isolane";

: column { label = "Change the isoplane to:" ;

: toggle { key = "left" ; label = "Left isoplane" ; value = "1" ; }

: toggle { key = "top" ; label = "Top isoplane" ; }

: toggle { key = "right" ; label = "Right isoplane" ; }

ok_cancel;

... takes this code:
 x: dialog { label = "Isoplane";
 : column { label = "Change the isoplane to: " ;
 : radio_button { key = "left" ; label = "Left isoplane" ; value = "1" ; }

 : radio_button { key = "top" ; label = "Top isoplane" ; }
 : radio_button { key = "right" ; label = "Right isoplane" ; }
 spacer;
 }
 ok_cancel;
 }

Notice that value = "1" turns turns on the X for the check box next to Left.

Before going on to the accompanying LISP file, first set up BricsCAD to display isometric mode:

1.	 Enter	the	Settings command.	

2.	 In	the	Search	field,	enter	"Snap	Style."

3.	 In	the	Snap	Type	droplist,	select	Isometric snap.

4.	 Click	X	to	dismiss	the	dialog	box.

BricsCAD is now in isometric mode.

As you use the dialog box described below, the cursor changes its orientation:

Left to right: Cursor for the left, top, and right isoplanes.

Let’s now turn to the LISP file that will make this dialog box work. It is similar to the code used for
toggles; the primary difference is that values are not added together:

 (defun c:xx (/)
 (setq dlg-id (load_dialog "c:\\x"))
 (new_dialog "x" dlg-id)

 22 Designing Dialog Boxes with DCL 425

;; See which radio button the user clicks:

 (action_tile "left" "(setq leftVar $value)")
 (action_tile "top" "(setq topVar $value)")
 (action_tile "right" "(setq rightVar $value)")

 (start_dialog)
 (unload_dialog dlg-id)

;; Lookup table:

 (if (= leftVar "1") (setq vars 0))
 (if (= topVar "1") (setq vars 1))
 (if (= rightVar "1") (setq vars 2))

;; Change system variable:

 (setvar "snapisopair" vars)
)

We have been cheating a bit, because we are forcing the dialog box to show the Left isoplane as the
default. This is not necessarily true. You really should modify the DCL and LISP code to make the
dialog box initially show the default isoplane — whether left, top, or right.

Setting the default is done with LISP’s set_tile function. First, change the DCL code so that it no
longer makes the Left isoplane the default: change value = "1" to:
 value = ""

In the LISP code, you need to do the following: (a) extract the value of SnapIsoPair with getvar,
and then (b) use set_tile as a callback.

1.	 Extract	the	current	value	of	SnapIsoPair	with	the	getvar	function:
 (setq vars (getvar "snapisopair"))

2.	 Set	the	default	button	with	the	set_tile	function:
 (if (= vars 0) (set_tile "left" "1"))

	 This	reads,	as	follows:

	 	 	 If the value of SnapIsoPair is 0 (= vars 0),

 then turn on the Left isoplane radio button (set_tile "left" "1").

	 Write	similar	code	for	the	other	two	radio	buttons:
 (if (= vars 1) (set_tile "top" "1"))
 (if (= vars 2) (set_tile "right" "1"))

The other change you need to make is to change some of the variables to local:
 (defun c:xx (/ leftVar topVar rightVar)

This forces the three variables to lose their value when the LISP routine ends. Otherwise, rightVar
keeps its value (it’s the last one) and makes Right isoplane the default each time the dialog box is
opened.

426 Customizing BricsCAD V19

With these changes in place, the improved code looks like this — with changes highlighted in
boldface:
 (defun c:xx (/ leftVar topVar rightVar)
 (setq vars (getvar "snapisopair"))
 (setq dlg-id (load_dialog "c:\\x"))
 (new_dialog "x" dlg-id)

;; Set the default button:

 (if (= vars 0) (set_tile "left" "1"))
 (if (= vars 1) (set_tile "top" "1"))
 (if (= vars 2) (set_tile "right" "1"))

;; See which radio button the user clicks:

 (action_tile "left" "(setq leftVar $value)")
 (action_tile "top" "(setq topVar $value)")
 (action_tile "right" "(setq rightVar $value)")

 (start_dialog)
 (unload_dialog dlg-id)

;; Lookup table:

 (if (= leftVar "1") (setq vars 0))
 (if (= topVar "1") (setq vars 1))
 (if (= rightVar "1") (setq vars 2))

;; Change system variable:

 (setvar "snapisopair" vars)

)

Now each time the dialog box starts, it correctly displays the default isoplane, such as “Right,” as
illustrated below:

CLUSTERS

Clusters help you combine related groups of controls. DCL lets you specify vertical, horizontal,
boxed, and unboxed clusters. In addition, radio clusters are required when you want to have two
radio buttons on at the same time. In all other cases, clusters are needed only for visual and orga-
nizational purposes.

BricsCAD makes it look as if there are eight tiles for making clusters:

	 	 Column	 	 	 	 Row

	 	 Boxed_Column	 	 	 Boxed_Row

	 	 Radio_Column	 	 	 Radio_Row

	 	 Boxed_Radio_Column	 	 Boxed_Radio_Row

 22 Designing Dialog Boxes with DCL 427

But these eight can be reduced to three, when you take the following into account:

•	 The	column tile	is	usually	not	needed,	because	BricsCAD	automatically	stacks	tiles	vertically	into	columns.

•	 The	column and	row tiles	display	a	box	as	soon	as	you	include	a	label	for	them.

•	 Tiles	with	radio	in	their	names	are	only	for	clustering	radio	buttons.

Columns and Rows
BricsCAD normally stacks tiles, so no column tile is needed, as illustrated by this DCL code:
 x: dialog {
 : button { label = "&Button"; }
 : button { label = "&Click"; }
 : button { label = "&Pick"; }
 ok_only;
 }

: button { label = "&Button"; }

: button { label = "&Click"; }

: button { label = "&Pick"; }

ok_only;

(The ampersand — & — specifies the shortcut keystroke that accesses the button from the keyboard
with the Alt key, such as pressing Alt+B.)

To create a horizontal row of tiles, use the row {} tile, as shown in boldface below:
 x: dialog {
 : row {
 : button { label = "&Button" ;}
 : button { label = "&Click"; }
 : button{ label = "&Pick" ;}
 }
 ok_only;
 }

The boxing of the horizontal row is invisible, so I highlighted it with a blue rectangle.

Because the ok_only tile is outside of the row {} tile, it is located outside of the cluster, stacked
vertically below the row of three buttons.

428 Customizing BricsCAD V19

Boxed Row
To actually show a rectangle (box) around the three buttons, change "row" to boxed_row, as follows:
 x: dialog {
 : boxed_row {

 // et cetera

 }
 ok_only;
 }

The box is made of white and gray lines to give it a chiseled 3D look.

Boxed Row with Label
You can add text to describe the purpose of the boxed buttons with the label attribute, as shown
in boldface below:
 x: dialog {
 : boxed_row { label = "Three Buttons";

 // et cetera

 }
 ok_only;
 }

The curious thing is that you get the same effect whether using the boxed_row or row tile. That’s
right: when you add a label to the row tile, BCL automatically adds a box around the cluster.

To eliminate the box, precede the row with the text tile for the title, as follows:
 x: dialog {
 : text { label = "Three Buttons";}
 : row {

 // et cetera

 }
 ok_only;
 }

 22 Designing Dialog Boxes with DCL 429

Special Tiles for Radio Buttons
You can use the regular row and column tiles with radio buttons, except in one case: when more
than one radio button needs to be turned on. Recall that only one radio button can be on (shown
the black dot) at a time; BricsCAD automatically turns off all other radio buttons that might be set
to on (value = "1").

The solution is to use two or more radio_column tiles, each holding one of the radio button sets
that need to be on.

It is not recommended to use rows for radio buttons, because this horizontal configuration is psy-
chologically more difficult for users.

Debugging DCL

The most common DCL coding errors are due to errors in punctuation, such as leaving out a clos-
ing semi-colon or quotation mark. These problems are announced by error-message dialog boxes,
which I illustrate later in this section.

DCL_SETTINGS

DCL contains a debugger for finding certain coding errors. To activate the debugger, add the au-
dit_level parameter to the beginning of the DCL file, before the dialog tile:
 dcl_settings : defalut_dcl_settings { audit_level = 3 ; }
 x : dialog { // et cetera

The debugger operates at four levels:

Audit Level Meaning

0 No debugging performed .
1 (Default) Checks for DCL errors that may terminate BricsCAD, such as undefined
 tiles or circular prototype definitions.
2 Checks for undesirable layouts and behaviors such as missing attributes or
 wrong attribute values .
3 Checks for redundant attribute definitions.

DCL ERROR MESSAGES

BricsCAD displays DCL-related error messages in dialog boxes. You may encounter some of the
following:

Semantic error(s) is DCL file
Sometimes an error dialog box suggests that you look at the acad.dce file — the DCL error file. The
problem is that the dialog box doesn’t tell you where this file is located. After running Windows
Search on my computer’s C: and D: drives, I finally found the file in the D:\documents and settings\
administrator\my documents folder.

430 Customizing BricsCAD V19

The file contains information about errors, such as:
 ====== DCL semantic audit of c:\x ======

 Error. Widget named "asdfasfads" is undefined.

It’s not clear to me why some errors are displayed directly in the message dialog boxes, while oth-
ers are stored in the acad.dce file.

Dialog has neither an OK nor a CANCEL button
Dialog boxes need to exit through an OK or Cancel button. At the very least, add the ok_only tile
to the DCL file. DCL was written before Windows automatically added the x (cancel) button to all
dialog boxes, and Autodesk has failed to update DCL to take this innovation into account.

Error in dialog file "filename.dcl", line n
Your DCL file contains the name of a tile unknown to BricsCAD. Check its spelling. In this example,
ok_only was prefixed by a colon (:), which is incorrect for prebuilt tiles.
 Incorrect: : ok_only ;

 Correct: ok_only ;

Dialog too large to fit on screen
A tile in the DCL file is creating a dialog box that would not fit your computer’s screen. This can
happen when the edit_edith, width, or height attributes are too large.

 22 Designing Dialog Boxes with DCL 431

Additional Resources

There is more to learn about writing dialog boxes with DCL, such as through these DCL tutorials:

•	 AfraLisp	at	http://www.afralisp.net/dialog-control-language/	sports	tutorials	on	AutoCAD,	including	these	

topics:
 Getting Started
 DCL Primer - Download
 Dialog Box Layout
 Dialogue Boxes Step by Step
 Dialogue Boxes in Action
 Nesting and Hiding Dialogues
 Hiding Dialogues Revisited
 LISP Message Box
 LISP Input Box
 Referencing DCL Files
 LISP Functions for Dialog Control Language (DCL)
 Functional Synopsis of DCL Files
 DCL Attributes
 Dialogue Box Default Data
 DCL Model
 DCL Progress Bar
 Attributes and Dialogue Boxes
 DCL without the DCL File
 The AfraLisp DCL Tutorials
 Entering Edit Boxes

•	 Jeffery	Sanders	has	at	http://www.jefferypsanders.com/autolisp_DCL.html	his	“DCL:	Dialog	Control	Lan-

guage”	tutorial:
 Getting Started
 Rows and Columns
 Controls
 Image
 Action
 Set_Tile and Mode_Tile
 List and how to handle them.
 Saving data from the dialog box
 Part 1 - Buttons
 Part 2 - Edit_Box
 Part 3 - List_Box
 Part 4 - PopUp_List
 Part 5 - Radio_Buttons
 Part 6 - Text and Toggle
 Part 7 - Putting it all together

•	 The	AutoLISP	Exchange	presents	“Getting	Started	with	Dcl	Dialogs”	tutorials	and	DCL	utility	programs	at	

http://web2.airmail.net/terrycad/Tutorials/MyDialogs.htm:
 Tutorial Overview
 Download Files
 Introduction to AutoLISP
 Introduction to Dialogs
 My Dialogs Menu
 Questions & Comments

	 The	utility	programs	are:
 Dcl Calcs
 View Dcl
 Show Icons
 Get Icon
 Get Buttons

	 Additional	utilities	are	available	through	the	AutoLISP	Exchange	at	http://web2.airmail.net/terrycad/,	such	as	

GetVectors for	creating	images	for	dialog	boxes	from	AutoCAD	entities.	

432 Customizing BricsCAD V19

Notes

Dabbling in VBA

The Pro and Platinum versions of BricsCAD for Widows include one of Microsoft’s program-
ming languages, VBA — Visual Basic for Applications. This is a version of Visual Basic designed to
work inside of software programs. BricsCAD runs VBA programs from menus and toolbars, and at
the command prompt.

VBA is completely different from LISP, just as LISP is completely different from Diesel and macros.
If you learned the BASIC programming language, then that knowledge will be of no help, unfortu-
nately, because Visual Basic has nothing in common with BASIC except for the name.

This chapter introduces you to the concepts of VBA programming and show you how to use it in
BricsCAD. (The Classic, MacOS, Linux, and demo versions of BricsCAD do not include VBA.)

CHAPTER SUMMARY

The following topics are covered in this chapter:

• Introducing Visual Basic for Applications

• Learning about VBA-related commands

• Sending commands through VBA

• Using the VBA programming environment

• Designing dialog boxes

• Examining VBA code

CHAPTER 23

434 Customizing BricsCAD V19

QUICK SUMMARY OF VBA PROGRAM COMPONENTS

Projects store macros. (LISP calls these “programs.”)

Macros refer to chunks of VBA programming code. (LISP calls these “functions.”) VBA macros can be embedded (stored
in drawings) or saved to .dvb files on disk. See the boxed text for the pros and cons of each.

Reactors are pieces of macro code that react to events in the drawing, such as the drawing being saved, an object added
to the drawing, or the user clicking a mouse button.

Forms refer to the location where VBA code is constructed. Often, forms look like dialog boxes.

Controls refer elements in forms, such as check boxes and droplists.

Classes are definitions of objects. For example, AcadLine is the class that defines the line entity.

Objects refer to classes put into forms. The objects can have the following attributes:

 Properties that describe the object, such as its color, height, and width.

 Methods that modify objects, such as copying and rotating them.

 Events that report when objects are modified.

QUICK SUMMARY OF VBA COMMANDS IN BRICSCAD

The VBA-related command names are shown below in boldface, while equivalent menu names are shown in parentheses.
You access the menu items from the Tools | VBA menu.

Vba (Visual Basic for Applications) opens the VB Editor for writing and debugging macros.

VbaRun (Macros) loads and runs VBA macros; displays the Macros dialog box and lists the names of VBA macros stored
in the current drawing.

VbaNew (New Project) specifies the name of a new VBA project file.

VbaLoad (Load Project) loads .dvb VBA project files; displays the Open dialog box.

-VbaLoad command load .dvb project files at the command prompt.

VbaMan (Project Manager) displays the VBA Manager dialog box.

AddInMan (Add-in Manager) lists programs that can be loaded into BricsCAD, and controls how they are loaded; displays
the Add-In Manager dialog box.

(VbaStmt is not supported by BricsCAD; its purpose in other programs is to load and run macros at the command prompt.)

 23 Dabbling in VBA 435

Introduction to VBA

VBA is the second most-important programming language in BricsCAD. While LISP is the easier of
the two to learn and use, it becomes cumbersome and slow for large programs and large sets of
data. Furthermore, to create dialog boxes, LISP requires that you employ the difficult-to-understand
DCL system.

At the other end of the programming spectrum is DRX or BRX, the DWG or BricsCAD runtime
extensions. These programming interfaces are the fastest of all, because they are intimately tied
into BricsCAD. You use D/BRX application programming interfaces with programs written in C or
one of its offshoots. They are not simple to learn, and they present a drawback: you must pay for
a compiler that works with D/BRX. In contrast, LISP is free with all versions of BricsCAD, and VBA
is free with BricsCAD Pro. DRX is not covered by this book. Note that as of BricsCAD V8, B/DRX
replaces SDS, the Softdesk Development System. Also as of V8, BricsCAD switched the format of its
VBA source files from IntelliCAD’s VBI to AutoCAD’s DVB format.

In contrast, VBA is fast and is designed with today’s user interfaces in mind. An advantage to learn-
ing VBA is that you can use the same programming language in many other Windows programs;
learn once, program in many. Perhaps the toughest part of learning VBA is getting to know its
jargon. Let’s begin!

ACCESSING VBA PROGRAMS

You write VBA code in a separate programming environment called the "VB Editor." The editor
provides assistance in writing the code, as well as constructing the user interface, which usually
consists of dialog boxes.

You can run VBA programs at the BricsCAD command line or through its Add In Manager dialog
box. Programs can also be launched from menu and toolbar macros, as well as from VisualLISP
functions, topics not covered by this ebook.

The code can be embedded in a BricsCAD drawing or kept outside of BricsCAD for access by all
drawings:

•	 To	run	embedded	macros,	use	the	VbaRun command.

•	 To	run	the	macros	stored	in	a	.dvb project	file,	first	load	them	through	the	VbaMan dialog	box	or	the VbaLoad

command	prompt.	Once	loaded,	the	macros	can	be	run	with	the	either	the	VbaRun or	VbaMan commands.

Sending Commands

VBA has a command that works just like the LISP (command) function: SendCommand executes
any BricsCAD command, such as Line, Erase, and Zoom. The function also handles command op-
tions, such as "1,1" and "All."

436 Customizing BricsCAD V19

EMBEDDED OR EXTERNAL

BricsCAD stores VBA macros in drawings (embedded) or in .dvb files (external). There are pros and cons to each method,
as listed by the following table:

 Embedded External

Storage: in drawings in .dvb files
Loading: loaded with drawings loaded with VbaLoad command
Distribution: with the .dwg file with the .dvb file
Reactors: yes no

An embedded macro cannot be used by other drawings, unless you specifically embed it into other drawing files.

Use the VbaMan command’s Embed button to convert projects to embedded projects. A serious problem with embed-
ded macros is that they can contain viruses. Hence, BricsCAD displays a warning dialog box that gives you the option
of disabling or enabling macros, or preventing them from loading at all.

Let’s take a look at it. Here is the VBA code for drawing a line between several pairs of x,y coordinates.
Sub Using_the_SendCommand()

 ThisDrawing.SendCommand "line 1,1 1,8 11,8 11,1 c "

End Sub

TIP	 This	VBA	code	isn’t	too	different	from	the	equivalent	code	in	LISP,	which	looks	like	this:	
	 	 	 (defun	using_the_sendcommand	()	
	 	 	 	 (command "line	1,1	2,2	c	")	
)

The words used in the snippet of VBA code have the following meaning:

Sub	 starts	a	new	subroutine	(or	function).

Using_the_SendCommand()	names	the	subroutine.	The	parentheses	()	indicate	that	no	variables	are	used.	Unlike	

LISP,	VBA	needs	to	know	the	names of	variables	and	their	type	ahead	of	time.	I’ll	cover	variables	and	types	

later	in	this	chapter,	but	for	now	it’s	enough	to	know	that	type refers	to	the	type	of	data	the	variable	holds,	

such	as	text	(strings),	whole	numbers	(integers),	decimal	numbers	(reals),	and	other	kinds	of	data.

ThisDrawing.SendCommand	operates	in	the	current	drawing,	identified	generically	by	"ThisDrawing."	You	do	not	

specify	the	drawing’s	name,	you	just	need	to	use	"ThisDrawing,"	and	VBA	knows	what	you’re	talking	about.

"line 1,1 1,8 11,8 11,1 c "	executes	the	Line	command,	drawing	four	lines	that	make	up	rectangle	between	1,1	to	11,8.	

The	command	and	its	prompts	are	read	as	a	string,	and	then	sent	to	BricsCAD’s	command	processor	—	just	

as	if	you	had	typed	this	at	the	command	prompt.	

TIP	 To	end	the	command	correctly,	ensure	that	the	string	has	a	space	at	the	end,	just	before	the	
closing	quotation	mark.	In	the	code	above,	you	can	see	the	space	between	the	c	and	the	".

	End Sub signals	the	end	of	the	subroutine.

 23 Dabbling in VBA 437

WRITING AND RUNNING VBA ROUTINES

Whereas Notepad or other text editor can be used to write LISP routines, a programming environment
included with BricsCAD must be used for VBA. You use this environment to write and run all code.

To access the VBA editor, follow these steps:

1.	 The	first	step	is	to	ensure	that	BricsCAD	can	run	VBA	macros.	Because	VBA	is	a	source	of	viruses,	the	ability	to	

run	VBA	programs	is	normally	turned	off.	Here	is	now	to	enable	VBA	macros:

a.	 From	the	BricsCAD	Tools menu,	choose	Security.	Notice	the	Security	dialog	box.

b.	 If	necessary,	choose	the	Security Level	tab.

TIP	 This	dialog	box	is	necessary	because	of	a	poor	decision	by	Microsoft	programmers.	When	they	
created	VBA:	they	allowed	documents	to	store	VBA	code.	This	convenient	feature	turned	into	a	major	
security	problem,	because	it	made	it	easy	for	hackers	to	distribute	benign-looking	Word	and	Excel	files	that	
contained	malicious	VBA	code.		
	 After	too	many	people	and	companies	suffered	from	having	precious	files	erased	from	their	
computers,	Microsoft	finally	added	this	dialog	box	to	overcome	the	VBA	exploit.	Today,	Windows-based	
documents	cannot	run	VBA	code	by	default	(security	level	=	high),	and	so	you	must	lower	the	security	level	
for	VBA	to	work.

c.	 If	the	security	level	is	set	to	High,	change	it	to	Medium	or	Low.	The	differences	between	the	settings	are	

listed	by	the	table	below:

VBA Setting Meaning

High All VBA routines are prevented from operating; default .
Medium BricsCAD asks if you wish to run each VBA routine .
Low All VBA routines are run, without question

.

d.	 After	you	change	the	security	level	in	this	dialog	box,	you	must	restart	BricsCAD	with	the	Quit command	

or	by	using	File | Exit.	

438 Customizing BricsCAD V19

2.	 With	VBA	enabled,	you	can	now	open	its	programming	environment.	From	the	Tools	menu,	choose	VBA,	and	

then	choose	Visual Basic for Applications.	Notice	the	VBA	programming	environment.

3.	 Code	is	written	in	modules —	a	form	that	is	initially	blank,	into	which	you	type	in	the	code.	To	start	a	new	

module,	from	the	Insert	menu,	choose	Module.	Notice	that	a	blank	window	appears,	as	shown	below.

4.	 Enter	the	following	code	into	the	module.	(This	is	the	same	line	drawing	code	you	saw	earlier.)
 Sub Using_the_SendCommand()

 ThisDrawing.SendCommand "line 1,1 2,2 1,2 c "

 End Sub

5.	 You	now	have	enough	code	to	execute	a	program.	Click	the	Run button,	which	you	find	on	the	toolbar.

 23 Dabbling in VBA 439

	 Success!	Notice	that	BricsCAD	draws	a	triangle.	If	the	routine	fails	to	run,	check	for	these	problems:

•	 Is	security	is	set	to	High	or	Medium?

•	 Does	the	code	contain	spelling	errors?

You can use SendCommand to draw and edit entities, and to change viewpoints with commands
like Zoom and Pan. You can use it to insert blocks, change properties, and plot drawings. Just be
careful that you enter the options of commands correctly; coordinates and the names of options
are particularly fussy.

DISPLAYING MESSAGES

Displaying messages in dialog boxes is as easy as using this code with the MsgBox function:
 MsgBox "The drawing border is complete."

1.	 Add	the	line	to	the	code	in	the	VBA	editor:

440 Customizing BricsCAD V19

2.	 And	then	click	the	Run button	again.	You	should	see	a	dialog	box	in	BricsCAD	that	looks	like	this:

Now that is much, much easier than coding a dialog box in LISP with DCL!

Constructing Dialog Boxes
Speaking of dialog boxes, VBA includes an interactive dialog box construction kit called the “user
form.” Let’s take a look at how it works.

To start a new user form, follow these steps:

1.	 In	the	Project	palette,	right-click	Module1.

2.	 From	the	shortcut	menu,	choose	Insert,	and	then	choose	Userform.	

	 Notice	the	gray	window	filled	with	a	grid	of	dots.	This	is	where	you	design	dialog	boxes.

	 Adjacent	to	the	form	is	the	Toolbox.	It	contains	the	elements	that	make	up	dialog	boxes	—	known	as	“con-

trols”	in	the	correct	VBA	jargon.	You	will	probably	recognize	many	of	the	controls,	such	as	text	entry	box,	

check	box,	and	radio	button.	

3.	 To	place	a	control,	choose	one	from	the	Toolbox,	and	then	position	it	in	the	user	form.	For	example,	to	add	

a	check	box,	follow	these	steps:

a.	 In	the	Toolbox,	click	the	check	box	item.

 23 Dabbling in VBA 441

b.	 In	Userform1,	click	anywhere.	Notice	that	the	check	box	is	placed	with	generic	text	that	reads	"Check-

box1."

c.	 To	edit	the	text	or	any	other	property	of	the	check	box,	glance	over	at	the	Properties	palette.	(If	it	is	not	

visible,	choose Properties Window	from	the	View menu;	if	necessary,	click	the	Categorized tab.)	Notice	

the	name	of	the	control,	plus	a	ton	of	other	properties	—	the	choices	can	become	quite	overwhelming.	

d.	 You	have	written	some	code	and	you	have	drawn	a	simple	dialog	box.	To	connect	the	check	box	with	

the	VBA	code,	choose	the	Select Objects	 	tool	from	the	Toolbox,	and	then	double-click	the	check	box		

control.	

	 Notice	that	another	module	window	opens,	into	which	you	can	enter	code	—	something	I	won’t	detail	

at	this	point.

We will look at the code-dialog box link in greater detail later in this chapter. First, though, an
introduction to how VBA really works.

442 Customizing BricsCAD V19

BricsCAD V19 Automation Object Model

 23 Dabbling in VBA 443

Object-Oriented Programming

In programming, is more efficient to work with objects. No, not geometric objects, but programming
objects. To keep clear the distinction, I refer to geometric objects as entities.

You had a hint of the object-oriented nature of VBA with the ThisDrawing.SendCommand piece
of code: the SendCommand function is instructed to operate on the ThisDrawing object, which is
the current drawing. You can add objects to ThisDrawing, such as ModelSpace to ensure the com-
mands are executed in model space instead of paper space:
 ThisDrawing.ModelSpace.SendCommand()

Notice the dots (.) that connects them, much like the dot in the dotted pairs used by LISP to access
entity data. VBA is premised upon object orientation, where everything in BricsCAD is organized
as objects and according to a strict hierarchy. Technically, this is known as "exposing the BricsCAD
database" through Microsoft’s Common Object Model (COM).

COMMON OBJECT MODEL

On the facing page is a very important figure: it is a diagram of the object model in BricsCAD. (It
changes from release to release as new objects are introduced.) The chart shows how entities
relate to objects:

•	 Entities	are	in	found	model	or	paper	space,	or	in	blocks.

•	 Model/paper	space	and	blocks	are	found	in	documents.

•	 Documents	(drawings)	are	found	in	the	application (BricsCAD).

As an alternative to the diagram, you can use the Object Browser found in BricsCAD’s VBA program-
ming environment, described next.

OBJECT BROWSER

The object browser lists all of the objects that VBA can access in BricsCAD. To use the object browser,
follow these steps:

1.	 From	the	View menu,	choose	Object Browser.	Notice	the	Object	Browser	palette.

444 Customizing BricsCAD V19

2.	 In	the	All	Libraries	droplist,	choose	BricsadDb.	(Db	is	short	for	database.)

3.	 Scroll	down	to	AcadLine.	This	is	the	BricsCAD	line	entity,	but	it	is	named	acadline	to	maintain	compatibility	

with	VBA	applications	programmed	in	AutoCAD.

4.	 On	the	right,	notice	all	the	properties,	methods,	and	events	that	are	available	for	line	entities.	I’ve	detailed	

them	in	the	following	section.	

5.	 At	the	bottom	is	helpful	info.	As	the	cursor	rests	on	a	member,	a	brief	description	is	provided,	along	with	a	

link	to	the	parent.	

	 The	figure	below	shows	the	information	provided	for	Length:

•	 Length	is	a	property that	specifies	the	length	of	the	current	line.

•	 It	is	a	double	variable	(double	accuracy	floating	point).

•	 Is	is	read-only,	which	means	programmers	and	users	cannot	edit	the	value.	

•	 It	is	a	member	of	BricsCADDb.AcadLine.

By now, you might realize that the Property palette reports the values stored by BricsCADDb for
all entities in the drawing. Let’s take a closer look at all that a line object entails.

LINE ENTITY

The line entity is created with the AcadLine method in model or paper space, and in a block:

	 ModelSpace.AddLine	adds	a	line	to	model	space.

	 PaperSpace.AddLine	adds	a	line	to	the	current	layout	tab.

 Block.AddLine	adds	a	line	to	the	specified	block,	dynamic	block,	or	xref	block.

 23 Dabbling in VBA 445

Lines have properties, methods, and events:

•	 Properties affect	the	geometry	and	look	of	the	line.

•	 Method refers	to	the	ways	in	which	lines	can	be	edited.

•	 Events refers	to	the	manner	in	which	entities	report	that	they’ve	been	changed.

Below, I’ve listed all properties, methods, and events for line entities. The list gives you an idea
of the richness (or, complexity) of the access you have to the internals of BricsCAD, the richness
provided by the object model through VBA.

Properties

Lines can have the following properties. Some of these will be familiar to you; others will be new.

Properties Meaning

Geometric Properties
Angle Angle in radians from the x-axis measured counterclockwise .
Delta Delta-x, -y, and -z values, from one endpoint to the other .
Length Length of the line .
Normal Normal to the line .
EndPoint X,y,z-coordinate of the line’s end point .
StartPoint X,y,z-coordinate of the start point .

Entity Properties
Hyperlinks Embedded hyperlink .
Layer Layer name .
Linetype Linetype name .
LinetypeScale Linetype scale .
Lineweight Lineweight width .
Material Material name (used for rendering) .
PlotStyleName Plot style name, if enabled .
Thickness Thickness, in the z-direction .
TrueColor Color .
Visible Visibility, independent of layer setting .

Other Properties
Application Specifies the BricsCAD application.
Document Specifies the drawing.
Handle Specifies the entity identification number.
HasExtensionDictionary Reports whether the line has an extension dictionary .
ObjectID Alternative method of obtaining the entity id number .
OwnerID Reports the ObjectID of the parent object .

Methods
The line can be edited with the following methods:

Method Meaning

Entity Editing
ArrayPolar Creates a polar array of the line .
ArrayRectangular Creates a rectangular array .
Copy Copies the line .
Delete Erases the line .
Mirror Mirrors the line .

446 Customizing BricsCAD V19

Mirror3D Mirrors the line in 3D .
Move Moves the line .
Offset Creates an offset copy of the line .
Rotate Rotates the line .
Rotate3D Rotates the line in 3D .
ScaleEntity Resizes the line .
TransformBy Moves, scales, and/or rotates the line .

Other Method:
GetBoundingBox Reports the coordinates of the rectangle that encompasses the line .
GetExtensionDictionary Returns the line’s extension dictionary .
GetXData Returns the line’s extended entity data .
SetXData Stores extended entity data in the line .
IntersectWith Returns coordinates where line intersects other objects .
Highlight Highlights the line .
Update Regenerates the line .

Events
When entities are changed, they trigger events. For lines, there is just one event. The Modified
event is triggered whenever a property is set, even when the new value equals the current one.

Events are prevented from triggering while modal dialog boxes are open. (A modal dialog box is
one that must be dismissed before you can continue working in BricsCAD; ie, most dialog boxes.)

Dialog Box with Code

In an earlier chapter, I showed you how to construct a dialog box using DCL, and then add the LISP
code to make it work. The dialog box looked like this:

The dialog box displays the current value of three system variables:

•	 Last point	reports	the	current	value	of	the	LastPoint	system	variable.

•	 Last angle reports	the	value	of	LastAngle	(read-only).

•	 Last prompt reports	the	value	of	LastPrompt	(read-only).

Title of the dialog box

OK button to exit dialog box

Names of system variables
and their values

 23 Dabbling in VBA 447

Let’s repeat the tutorial, this time using VBA to do both jobs done separately by DCL and LISP be-
fore – designing the dialog box and writing-running the code.

DESIGNING THE DIALOG BOX

Dialog boxes are designed with the VBA programming environment, as follows:

1.	 Start	BricsCAD,	and	then	use	the	Tools | VBA | Visual Basic	for Applications	command	to	open	the	VBA	pro-

gramming	environment.

2.	 Start	a	new	Userform.	(From	the	Insert menu,	choose	UserFrom.)	Notice	that	VBA	creates	a	generic	dialog	

box	named	UserForm1.

3.	 Change	the	name	on	the	title	bar	by	following	these	steps:

a.	 Open	the	Properties	palette.	(From	the	View menu,	choose	Properties Window.)

b.	 Scroll	down	to	Caption,	and	then	change	"UserForm1"	to Last Input.	As	you	type,	notice	that	the	title	

bar	of	the	dialog	box	updates	at	the	same	time.

TIPS	 Rename	the	buttons	and	text	boxes	so	that	the	names	describe	what	they	do.	For	instance,	
rename	the	OK	button	as	btnOK;		rename	the	Last	Point	text	box	as	txtLastPoint,	and	so	on.	
	
If	the	font	size	and	style	in	the	Code	window	are	too	small,	you	can	change	them.	From	the	Tools menu,	
choose	Options.	Select	Editor Format,	and	then	choose	a	different	font	size	and/or	font		name.		
	
The	VBA	code	editor	uses	color	to	highlight	different	type	of	code:	
	 Green text	 	 Comments	
	 Black text		 Normal	code	
	 Blue text 	 VBA	keywords	
	 Red text 	 Errors	in	the	syntax	
	 Yellow	highlight	 Execution	points	
	 Brown	highlight	 Breakpoints

448 Customizing BricsCAD V19

4.	 The	bulk	of	our	new	dialog	box	consists	of	three	text	input	boxes.	The	first	one	is	constructed	like	this:

a.	 In	the	Toolbox,	choose	the	TextBox control.

b.	 Click	anywhere	in	the	center	of	the	form.	Notice	the	text	entry	box	appears,	but	it	lacks	a	text	prompt	

for	the	user,	such	as	"Last	Angle:"	You	add	the	text	a	little	later	on.

5.	 In	BricsCAD,	the	LastAngle	system	variable	is	read-only.	This	means	that	users	can	view	the	value	but	not	

change	it.	Text	boxes	that	cannot	be	edited	by	users	are	traditionally	colored	gray.	Here	is	how	to	make	the	

text	box	read-only	and	gray:

a.	 Ensure	the	text	box	is	selected	(has	grips,	as	illustrated	above).

b.	 In	the	Properties	palette,	change	the	value	of	BackColor	(found	in	the	Appearance	section)	to	Inactive

Title Bar.	

	 “Inactive	Title	Bar”	is	an	enum,	a	preset	value	in	VBA,	kind	of	like	pi in	LISP.	(Enum	is	short	for	“enumer-

ated.”)	Should	the	user	change	the	colors	of	Windows’	user	interface,	the	background	color	of	this	text	box	

will	also	change.

 23 Dabbling in VBA 449

6.	 To	add	the	prompt,	use	the	Label	tool,	as	follows:

a.	 Choose	the	Label tool	from	the	Toolbox.

b.	 Click	and	drag	a	rectangle	in	front	of	the	text	box.	If	necessary,	drag	the	label	into	position.

c.	 Backspace	over	the	generic	"Label1"	text,	replacing	it	with	Last Angle:

d.	 To	right	justify	the	text,	change	the	value	of	TextAlign property	to	3 (fmTextAlignRight).

TIP	 You	can	drag	dialog	box	elements	with	the	cursor,	but	it	tends	to	jump	to	the	grid	dot	spacing.	
To	fine	tune	the	location	of	an	element,	use	the	Position section	of	the	Properties	palette.		
	 Change	the	value	of	Top to	move	the	element	up	and	down,	Left to	move	horizontally.	The	
values	represent	the	number	of	pixels	from	the	upper	left	corner	of	the	dialog	box.

7.	 You	can	create	the	other	two	text	input	boxes	through	copy	and	paste:

a.	 Use	the	cursor	to	select	both	elements.	Here	are	two	ways	to	do	it:

	 •	 You	can	drag	a	rectangle	around	both	of	them.	

	 •	 Alternatively,	you	can	choose	one,	hold	down	the	Ctrl key,	and	then	choose	the	other.

b.	 Press	Ctrl+C	to	make	a	copy	(stored	in	the	Clipboard).

450 Customizing BricsCAD V19

c.	 Press	Ctrl+V to	paste	the	copy	in	the	dialog	box.	The	copies	are	pasted	right	on	top	of	the	originals,	

unfortunately.	This	means	you	need	to	move	one	of	them,	following	the	pasting.

d.	 Separate	the	overlapping	elements	by	dragging	the	copies	above	the	originals.

8.	 Change	the	properties	of	the	new	pair	of	text	input	elements:

•	 Change	text	label	to	Last Point.

•	 Change	BackColor	of	the	text	box	Window Background	(white),	because	the	value	of	the	LastPoint	

system	variable	can	be	changed	by	the	user.

9.	 Edit	the	wording	for	the	Last Prompt	field.	Keep	the	background	color	of	the	Last	Prompt	text	box	gray,	

because	the	LastPrompt	system	variable	cannot	be	edited	by	users.

10.	 It	is	quite	likely	that	the	elements	don’t	line	up	perfectly.	VBA	can	align	them	for	you,	as	follows:

a.	 Select	the	three	text	elements,	and	then	right-click.

b.	 From	the	shortcut	menu,	choose	Rights.	Notice	that	they	now	line	up	perfectly.

 23 Dabbling in VBA 451

c.	 Repeat	for	the	three	input	boxes.

11.	 The	final	elements	are	the	OK	and	Cancel	buttons.	From	the	Toolbox,	drag	the	Command Button	element	

onto	the	user	form.	

Left: Selecting the CommandButton tool, and then... right: ...dragging it onto the form.

12.	 Change	its	Caption	property	to	OK.

13.	 Repeat	to	add	the	Cancel button.

The design of the dialog box is complete. The next stage is to add the code that makes the dialog
box operate.

If you wish, you can fine tune the look of the dialog box by making the OK button narrower, adding
a frame around the text input boxes, changing colors of elements, and so on. I find it interesting

452 Customizing BricsCAD V19

that I prefer working with DCL, because BricsCAD takes care of lining up dialog box elements so
that it looks good — without all the manual tweaking required by VBA.

ADDING THE CODE

With the dialog box design in place, let’s start working on the code. In LISP, a single routine handles
everything that happens in the dialog box; in contrast, VBA uses many snippets of code. One snip-
pet handles the Cancel button, another the OK button, another handles the value displayed by the
Last Point text box, and so on.

You don’t need to worry about linking code snippets to dialog box elements. VBA does that for
you. When the user clicks on a text box or the OK button, VBA runs the correct snippet of code
automatically.

Clicking Cancel
To link the Cancel button to a VBA code snipped, follow these steps:

1.	 Double-click	 the	Cancel button.	Notice	 that	a	module-like	 form	appears,	 and	 that	 it	 is	partially	filled	out.

2.	 Add	the	command	for	closing	the	dialog	box:	
 End

3.	 You’re	done!

 23 Dabbling in VBA 453

4.	 Well,	that’s	not	quite	all.	You	still	need	to	test	that	Cancel	button	actually	works.	Here’s	how:

a.	 On	the	VBA	toolbar,	click	the	Run button.	Notice	that	the	dialog	box	appears	in	BricsCAD.

b.	 Try	clicking	an	element	other	than	the	Cancel	button,	such	as	the	OK	button.	Nothing	happens,	because	

there	is	no	code	tied	to	it.

c.	 Click	Cancel.	The	dialog	box	should	disappear.	Yay,	it	works!

QUICK SUMMARY OF VBA DATA TYPES

Data Type Comment Range From To

Byte ... 0 255

Boolean ... True False

Integer ... -32,768 32,767

Long Long integer -2,147,483,648 2,147,483,647

Single Single-precision floating-point -3.402823E38 -1.401298E-45 (negative Values)
 1.401298E-45 3.402823E38 (positive values)

Double Double-precision floating-point -1.79769313486231E308 -4.94065645841247E-324 (negative values)
 4.94065645841247E-324 1.79769313486232E308 (positive values)

Decimal ... +/-79,228,162,514,264,337,593,543,950,335 (no decimal point)
 +/-7.9228162514264337593543950335 (28 decimal places)
 +/-0.0000000000000000000000000001 (smallest nonzero number)

Date ... January 1, 100 December 31, 9999

Currency Scaled integer -922,337,203,685,477.5808 922,337,203,685,477.5807

String Variable-length 0 approximately 2 billion characters
 Fixed-length 1 approximately 65,400 characters

Variant Numbers Any numeric value up to a double
 Characters Same as variable-length string

Object ... Any object reference

User-defined ... Same range as its data type.

454 Customizing BricsCAD V19

LastInput.Dvb

With the introduction to VBA programming behind you, let’s carry on and examine a fully-
coded program. Below is the Last Input dialog box, and on the facing page is the VBA code
for LastInput.Dvb. In the following pages, I comment on parts of the code.

The main part of the project is shown in cyan; other modules are like subroutines that sup-
port the main module. I’ve added lines to visually separate modules, and I have color coded
module names so that you can cross-reference them.

The following VBA code was developed by Ferdinand Janssens, programmer at Bricsys.

QUICK SUMMARY OF VBA STRING MANIPULATION

Keyword, Operator Comment

Asc, Chr Accesses ASCII and ANSI values .
Format, Lcase, Ucase Converts to lower- or uppercase .
Format Formats strings .
InStr, Left, LTrim, Mid, Len Finds lengths of strings .
LSet, Rset Justifies string left or right.
Option Compare Sets string comparison rules .
Right, RTrim, Trim Manipulates strings .
Space, String Creates strings of repeating characters .
StrComp Compares two strings .
StrConv Converts strings .
& Concatenates strings .

 23 Dabbling in VBA 455

Option Explicit

Private Sub txtLastAngle_Change()
End Sub

Private Sub txtLastPrompt_Change()
End Sub

Private Sub UserForm_Initialize()
 UpdateForm
End Sub

Private Sub btnUpdate_Click()
 UpdateForm
End Sub

Private Sub btnOK_Click()
 Unload Me
End Sub

Private Sub UpdateForm()
 Dim vLastpoint As Variant
 vLastpoint = ThisDrawing.GetVariable("LASTPOINT")
 Me.txtLastPoint.Text = PointToString(vLastpoint)
 Me.txtLastAngle.Text = AngleToString(ThisDrawing.GetVariable("LASTANGLE"))
 Me.txtLastPrompt.Text = TrimLF(ThisDrawing.GetVariable("LASTPROMPT"))
End Sub

Private Function PointToString(vIn As Variant) As String
 Dim sPt As String: sPt = vbNullString
 Dim iPrecision As Integer
 iPrecision = ThisDrawing.GetVariable("LUPREC") ‘ LUPREC holds the current Lin-
ear Unit precision (see Setting Dialog)
 If VarType(vIn) > vbArray Then
 sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", "
 sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", "
 sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision)
 End If
 PointToString = sPt
End Function

Private Function StringToPoint(sIn As String) As Variant
 Dim sCoords() As String: sCoords = Strings.Split(sIn, ",")
 Dim tmpPt(0 To 2) As Double
 If UBound(sCoords) = 0 Then
 tmpPt(0) = Val(sCoords(0))
 ElseIf UBound(sCoords) = 1 Then
 tmpPt(0) = Val(sCoords(0))
 tmpPt(1) = Val(sCoords(1))
 ElseIf UBound(sCoords) = 2 Then
 tmpPt(0) = Val(sCoords(0))
 tmpPt(1) = Val(sCoords(1))
 tmpPt(2) = Val(sCoords(2))
 End If
 StringToPoint = tmpPt
End Function

Private Sub txtLastPoint_BeforeUpdate(ByVal Cancel As MSForms.ReturnBoolean)
 Dim ptModif As Variant
 ptModif = StringToPoint(Me.txtLastPoint.Text)
 ThisDrawing.SetVariable "LASTPOINT", ptModif

456 Customizing BricsCAD V19

 Me.txtLastPoint.Text = PointToString(ptModif)
End Sub

Private Function StringFromValueFixedDecimal(ByVal dVal As Double, ByVal iDecimals As Integer) As
String
 StringFromValueFixedDecimal = VBA.FormatNumber(VBA.Round(dVal, iDecimals), iDecimals)
End Function

Private Function TrimLF(ByVal sVal As String) As String
 TrimLF = VBA.Replace(sVal, vbLf, vbNullString)
End Function

Private Function AngleToString(dRadians As Double) As String
 Dim iAnglePrecision As Integer
 iAnglePrecision = ThisDrawing.GetVariable("AUPREC") ‘ AUPREC holds the current Angular Unit
precision (see Setting Dialog)
 AngleToString = ThisDrawing.Utility.AngleToString(dRadians, acDegrees, iAnglePrecision)
End Function

QUICK SUMMARY OF VBA DATA TYPE RETURN VALUES

Constant Value Description

vbEmpty 0 Empty or uninitialized
vbNull 1 Null or no valid data
vbInteger 2 Integer
vbLong 3 Long integer
vbSingle 4 Single-precision floating-point number
vbDouble 5 Double-precision floating-point number
vbCurrency 6 Currency value
vbDate 7 Date value
vbString 8 String
vbObject 9 Object
vbError 10 Error value
vbBoolean 11 Boolean value
vbVariant 12 Variant (array)
vbDataObject 13 Data access object
vbDecimal 14 Decimal value
vbByte 17 Byte value
vbUserDefinedType 36 Variant (user-defined types)
vbArray 8192 Array

 23 Dabbling in VBA 457

QUICK SUMMARY OF VBA PREDEFINED CONSTANTS

Constant Value Comments

vbCrLf Chr(13) + Chr(10) Carriage-return, linefeed
vbCr Chr(13) Carriage-return
vbLf Chr(10) Linefeed
vbNewLine Chr(13) + Chr(10) New line character (\n)
vbNullChar Chr(0) Character with value 0
vbNullString 0 String with value 0; used for external procedures
vbObjectError -2147221504 Values greater are user-defined error numbers
vbTab Chr(9) Tab (\t)
vbBack Chr(8) Backspace

Conversion Routines

VBA was not designed with CAD in mind, and so it does not easily handle concepts unique to vector
drawings, such as the processing of 2D and 3D points. Just as in LISP, VBA must separate coordinate
triplets, and then recombine them as strings.

Two of the conversion routines in Mr Janssens’s program are useful for any VBA programming with
BricsCAD. These are as follows:

• PointToString	coverts	3D	points	(x,	y,	z	coordinates)	to	strings,	such	as	3,2,1	to	"3","2","1".

• StringToPoint	coverts	strings	back	to	1D,	2D,	or	3D	coordinate	points,	such	as	"3","2","1"	to	3,2,1.

Frankly, I am surprised at the amount of code VBA needs for adding and removing quotation marks
from the single, most common, type of CAD data. The good news is that once you write these two
routines, you can use them over again in your other VBA programs.

Here are descriptions of how they work.

POINTTOSTRING CONVERSION FUNCTION

The PointToString routine adds quotations marks to each coordinate to convert them from real
numbers to strings. For example, 3.4,2,0 becomes "3.4","2","1". It looks like this:
Private Function PointToString(vIn As Variant) As String
 Dim sPt As String: sPt = vbNullString
 Dim iPrecision As Integer
 iPrecision = ThisDrawing.GetVariable("LUPREC")
 If VarType(vIn) > vbArray Then
 sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", "
 sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", "
 sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision)
 End If
 PointToString = sPt
End Function

458 Customizing BricsCAD V19

(VBA keywords are shown in boldface.)

Let’s examine how this code works, line by line.

Private Function PointToString(vIn As Variant) As String
Private means that the function can be accessed only within this module. This is roughly analogous
to the practice in LISP where variables names are placed after the slash character to make them
local, such as (defun function (/ vaname)).

Function specifies the name, arguments, and code. It is like the defun function in LISP.

 PointToString is the name of the function.

 vIn is the name of the argument’s variable (vIn is short for “variant input”). The purpose of
 this variable is to receive the argument passed to this function when it is processed.

 As declares the data type of the argument.

 Variant is the data type, meaning the function is completely flexible when it comes to
 data types, working with numbers, text, and arrays.

 As String means that the output of the function is a variable length string.

In summary, this line of code defines a local function named “PointToString” that expects numbers
or text as input, and then returns text.

Dim sPt As String: sPt = vbNullString
Dim is the most common way of declaring variable names. Unlike LISP, VBA needs to know ahead
of time the names of variables and their data types. While to experienced LISP programmers dec-
larations seems like unnecessary extra work, this ahead-of-time declaration is one of the ways that
VBA routines run faster than ones written in LISP.

 sPt is the name of the variable (sPt is short for “string point”).

 As is the keyword for declaring data types.

 String is the data type.

: (colon) indicates the end of a line label. sPt is given its initial value:

 vbNullString is one of VBA’s predefined constants — just like pi is predefined as 3.1431... in
 LISP. The value of vbNullString is 0 (not the same as a zero-length string, ""). This is done so
 that the dialog box initially displays 0 when the LastPoint contains nothing.

In summary, this line of code defines a variable named "sPt" and assigns it the value of 0.

Dim iPrecision As Integer
iPrecision is the name of another variable (short for “integer precision”). Its purpose is to specify
the number of decimal places used by this function.

 23 Dabbling in VBA 459

 As Integer defines its data type as an integer, because an integer is large enough to hold the
 value of decimal places, which in BricsCAD ranges from 0 to 8.

In summary, this line of code defines a variable named "iPrecision."

iPrecision = ThisDrawing.GetVariable("LUPREC")
ThisDrawing is VBA’s way of accessing data from the current drawing — without needing to know
its name.

 GetVariable gets the value of system variables, and it gets the value of the current drawing.
 This is like using the (getvar) function in LISP.

 "LuPrec" is the name of the system variable that stores the value of the current linear
 units precision (as set by the Setting dialog box). LuPrec is a BricsCAD name and has
 nothing to do with VBA; this means that you can use the same line of code to access the
 value of any system variable, including those unique to BricsCAD.

In summary, this line of code gets the value of system variable LuPrec, and then stores it in iPrecision.

If VarType(vIn) > vbArray Then
If starts the usual if-then decision-making construct found in all programming languages. (If they
have no “if-then” construct, then they are not programming languages.) In this case, if checks the
value of vIn.

 VarType is the function that determines the data type of variables. It returns an integer that
 reports the data type. Once you know the data type, you can perform other work on it. In this
 case, it checks the data type of vIn.

 > is the greater than function.

 vbArray is another VBA constant; this one carries the value of 8192. However,
 array types always return a value larger than 8192 in order to report the type of
 the array. An array can consist of numbers, text, Booleans, and so on. In our
 program, the array is the coordinate triplet, such as 1,2,3.

In summary, this line of code checks to see if the data type of vIn is an array. More specifically, it
asks, “Is the value of vIn greater than 8192? If so, then it is an array, and processing can continue.”

sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", "
StringFromValueFixedDecimal is a user-defined function that converts a decimal into a string,
and then simulates the number of decimal points. (It is listed a little later in the LastPoint.Dvb pro-
gram.) It expects two arguments: a decimal number and the precision (ie, the number of decimal
points to display).

 vIn(0) extracts the first value of array vIn. Yup, VBA considers 0 as #1, just as in LISP. If vIn is
 3.2,2,0, then 3.2 is extracted.

460 Customizing BricsCAD V19

 iPrecision specifies the number of decimal points. For example, is vIn(0) is 3.2, then this
 function changes it to "3.2000" (when iPrecision is 4) or to "3", when iPrecision is 0.

 & is VBA’s function for concatenating (linking together) strings — same as the
 StrCat function in LISP.

 ", " is concatenated to the string, resulting in sPt holding the value of
 "3.2000, ".

In summary, this line of code converts the first element of the coordinate array into a string with a
fixed number of decimal points, and then adds a comma and space.

sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", "
This line of code is identical to the one above, but with two differences:

sPt = sPt & concatenates the existing value of sPt ("3.2000, ") with the second value extracted
from the array.

StringFromValueFixedDecimal(vIn(1) extracts the second element from the array.

In summary, this line of code converts the second element of the coordinate array into a string, and
then concatenates it to the first element. sPt now holds "3.2000, 2.0000, ". You can start to see how
the numerical array is being converted, piece by piece, to a string array.

sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision)
The process repeats, with sPt now holding the string "3.2000, 2.0000, 0.000".

End If
End indicates the end of a section.

 If indicates the end of the if-then statement. If vIn hadn’t been an array, then the routine
 would have skipped the previous three lines of code, and jumped to here. Can you guess the
 value sPt would hold in this case?

PointToString = sPt
The value of sPt is assigned to PointToString, where it can be accessed by any other line of code.
(If vIn had not been an array, the value of sPt would be 0.)

End Function
End specifies the end of the module.

 Function indicates that the function has come to an end. Because this is a subroutine, the
 value of PointToString is now returned to the main part of the code, where it is used by this
 statement:
 Me.txtLastPoint.Text = PointToString(vLastpoint)

 23 Dabbling in VBA 461

STRINGTOPOINT CONVERSION FUNCTION

The StringToPoint routine removes quotations marks from each string to convert it to a real num-
ber. For example, "3.4, 2, 0" becomes 3.42,0. Some of the code will be familiar to you from above.
Private Function StringToPoint(sIn As String) As Variant
 Dim sCoords() As String: sCoords = Strings.Split(sIn, ",")
 Dim tmpPt(0 To 2) As Double

 If UBound(sCoords) = 0 Then
 tmpPt(0) = Val(sCoords(0))

 ElseIf UBound(sCoords) = 1 Then
 tmpPt(0) = Val(sCoords(0))
 tmpPt(1) = Val(sCoords(1))

 ElseIf UBound(sCoords) = 2 Then
 tmpPt(0) = Val(sCoords(0))
 tmpPt(1) = Val(sCoords(1))
 tmpPt(2) = Val(sCoords(2))

 End If

 StringToPoint = tmpPt

End Function

 Let’s examine what some of this code does:

Dim sCoords() As String: sCoords = Strings.Split(sIn, ",")
Dim sCoords() As String defines variable sCoords (sort for "string coordinates), and assigns a
data type of String.

Split splits the string into a one-dimensional array with the specified number of substrings.

 "," specifies the delimiter, which tells Split where to make the split. In this case, a string like
 "3.4, 2, 0" becomes "3.4", "2", and "0".

If UBound(sCoords) = 0 Then
UBound reports the size of an array. It is useful in determining whether the function is dealing
with 2D coordinates (a 2-element array) or 3D, a three-element array.

tmpPt(0) = Val(sCoords(0))
Val converts numbers in strings as a numeric value. In short, the "3.4" becomes 3.4.

This subroutine is used by the txtLastPoint_BeforeUpdate function.

462 Customizing BricsCAD V19

QUICK SUMMARY OF VBA SHORTCUT REFERENCES

Term Comments

This Refers to the current or active BricsCAD document .
Me Makes variables available to every procedure in a class module . Used when a class
 has more than one instance, because Me refers to the instance of the class in the
 code currently being executed .

LOADING AND RUNNING LASTINPUT.DVB

You can download the LastInput.Dvb file from my Dropbox account at
https://www.dropbox.com/s/l3maokh191wke1h/lastinput.dcl?dl=0.

Follow these steps to load the program:

1.	 Start	BricsCAD.	

2.	 From	the	Tools menu,	select	VBA,	and	then	choose	Load Project.

3.	 In	the	Open	dialog	box,	choose	"LastPoint.Dvb",	and	then	click	Open.	The	program	is	now	loaded	into	Brics-

CAD.

	 (If	the	Security	dialog	box	appears,	choose	Low,	and	then	click	OK.)

To run the program, follow these steps:

1.	 From	the	Tools menu,	select	VBA,	and	then	choose	Macros.

2.	 In	the	Run	BricsCAD	VBA	Macro	dialog	box,	choose	"Module1.main".

3.	 Click	Run.	

	 Notice	that	the	Last	Input	dialog	box	appears.	If	the	drawing	is	brand-new	(no	objects	drawing),	then	the	

fields	report	0.

4.	 To	see	the	dialog	box	at	work,	start	the	Line	command,	and	then	draw	a	few	lines.	(This	dialog	box	is	non-

model,	meaning	it	can	stay	open	even	as	you	execute	other	commands	in	BricsCAD.)

5.	 Click	Update to	see	the	dialog	box	report	the	values	of	the	last	point,	angle,	and	prompt.

6.	 To	change	the	value	of	Last	Point,	highlight	the	coordinates,	and	then	enter	different	values	for	x,	y,	and	z.

7.	 When	done,	click	OK.	The	dialog	box	disappears.

8.	 Press	Esc to	cancel	the	Line	command.

TIP	 To	include	a	VBA	project	in	a	toolbar	or	menu	macro,	use	the -VbaRun	command,	and	then	pro-
vide	the	macro	name	as	the	argument.

 23 Dabbling in VBA 463

QUICK SUMMARY OF VBA VARIABLE DECLARATIONS

Declaration Comments

Dim Default method of declaring variables:
 • When Dim appears within the procedure, the variable is available
 only within the procedure .
 • When Dim appears in the declarations section of the module, the
 variable is available to all procedures within the module but not to
 other modules in the project .
Public Makes variables available to all procedures in all modules in the project .
Private Restricts variables for use only by procedures in the same module .
Static Variables retain their values between calls .
Option Explicit All variables must be explicitly declared within the module .

Notes

PART IV

Appendices

Notes

APPENDIX A

Command Summary

IN THIS APPENDIX, YOU REFERENCE THE NAMES OF OVER 900 COMMANDS IN BRICSCAD.
They are listed alphabetically by name, as well as in groupings of common commands, as follows:

ai- bonus	commands	 	 	 	

bim-		 building	information	modeling	commands	

bm- BricsCAD	mechanical	commands	

Cloud		 	Bricsys	24/7	(ex-Chapoo)	commands	

Dim-		 dimension	commands	 	

dc-		 	 dimensional	constraint	commands	

dm- direct	modeling	commands	

gc-		 	 geometric	constraint	commands	

Layer		 layer	control	commands	 	 	

sm- sheet	metal	commands	 	

VBA-		 Visual	Basic	for	Applications	commands	 	 	

ViewBase		 drawing	generation	commands	 	 	 	

When a command has a hyphen prefix, such as -Color, the command runs at the command prompt.

Command names new in BricsCAD V19 are shown in blue.

468 Customizing BricsCAD V19

A Commands
About displays information about the program.

AcisIn imports 3D solids in SAT format (SAT is short for “save as text”).

AcisOut exports 3D solids and surface entities in SAT format.

AddInMan displays the VBA COM Add-In Manager dialog box (windows only).

AddSelected creates a new entity of the same type as an existing entity.

Align aligns entities with other entities in 2D and 3D space.

AlignSpace adjusts viewport angle, zoom factor, and pan position based on alignment points specified in model space and paper
space; operates in paper space only.

AniPath makes movies from views generated by a camera moving through 3D scenes.

AnnReset resets all scale representations to the entity’s original positions

AnnUpdate updates annotative scale factors to match updates made with Style and DimStyle commands.

Aperture sets selection area for snapping to entities.

Apparent toggles Apparent intersection entity snap; snaps to the intersections of entities, even when they only appear to intersect
in 3D space.

AppLoad loads DRX, LISP, and SDS applications to run inside BricsCAD; Mac and Linux load only LISP and SDS.

Arc draws arcs.

Area determines the area and perimeter of closed 2D objects; the area and length of open polylines and splines as if they were
closed; the lengths only of lines, sketches, arcs, and elliptical arcs; and the areas of faces of 3D objects.

Array and -Array creates dynamic polar, path, and rectangular arrays of entities.

ArrayClassic runs the dialog box-based version of the Array command.

ArrayClose and -ArrayClose end the array editing session.

ArrayEdit edits entities and source entities of arrays.

ArrayEditExt edits entities in arrays.

ArrayPath distributes entity copies evenly along a path into multiple rows and levels.

ArrayPolar distributes entity copies evenly in a circular pattern about a center point or axis of rotation, using multiple rows and
levels.

ArrayRect distributes entity copies into any number of rows, columns, and levels.

AttachmentsPanelOpen opens the Attachments panel for managing Xref, Raster Image, PDF, and Pointcloud attachments.

AttachmentsPanelClose closes the Attachments panel.

AttDef and -AttDef defines attributes for blocks.

AttDisp toggles the display of attributes through all, none, or those normally visible.

AttEdit edits the values and properties of attributes.

AttExt and -AttExt exports data from attributes to text files.

AttRedef redefines blocks and updates associated attributes.

AttSync synchronizes attribute definitions in all references to a specified block definition.

Audit repairs open drawings in case of data corruption.

AutoComplete sets the options for autocomplete mode on the command line.

appendix A Command Summary 469

Ai Commands
Ai_Box draws 3D boxes as mesh surfaces.

Ai_CircTan draws a circle tangent to three entities.

Ai_Cone draws 3D cones as mesh surfaces.

Ai_Cylinder draws 3D cylinders as mesh surfaces.

Ai_DeSelect unselects all selected entities.

Ai_Dish draws 3D dishes as mesh surfaces.

Ai_Dome draws 3D domes (half-spheres) as mesh surfaces.

Ai_DrawOrder changes the display order of overlapping entities.

Ai_Fms switches to the first layout tab and enters model space of the first viewport.

Ai_Molc makes the layer current of the selected entity (short for “make object layer current”).

Ai_MSpace switches to model tab.

Ai_PSpace switches to the first layout tab.

Ai_Pyramid draws 3D pyramids as mesh surfaces.

Ai_SelAll selects all non-frozen entities in the current space, like Ctrl+A.

Ai_Sphere draws 3D spheres as mesh surfaces.

Ai_TileMode1 sets TileMode variable to 1 and then switches to model tab.

Ai_Torus draws 3D tori as mesh surfaces.

Ai_Wedge draws 3D wedges as mesh surfaces.

AiMleaderEditAdd adds leader lines to multi-leaders.

AiMleaderEditRemove removes leader lines from multi-leaders.

B Commands
Base changes the drawing’s insertion point when when it is inserted into other drawings.

BAttMan manages the attributes of block definitions (short for Block Attribute Manager).

BClose closes the Block Editor

BEdit and -BEdit open the Block Editor environment

BHatch and -BHatch fills closed areas with repeating patterns, solid colors, or gradients.

Blade opens the LISP editing environment

BlipMode enables and disables display of marker blips.

Block and -Block groups entities into blocks (symbols).

Blockify converts entities to blocks to save space and increase speed

BmpOut exports the current viewp4ort as a BMP (bitmap) file.

Boundary and -Boundary draws a polyline that forms a boundary around the inside closed areas.

Box draws three-dimensional solid boxes.

Break removes portions of entities.

Browser opens the default Web browser.

470 Customizing BricsCAD V19

BIM Commands
(Available as an add-on to the Platinum edition only; bim = building information modeling)

bimAddEccentricity controls relative positions of the axes in linear solids.

bimApplyProfile applies profiles to linear entities and linear solids.

bimAttachComposition attaches BIM compositions to solids.

bimAttachSpatialLocation locates the drawing in mapping references.

bimCheck removed from BricsCAD V19.

bimClassify classifies an entity as a building element with a name and an internal ‘guid’ (globally unique identifier).

bimConnect removed from BricsCAD V19.

bimCopy copies entities normal (at 90 degrees) to the selected face.

bimCurtainWall creates curtain walls made of planar quadrilateral panels from free-form surfaces.

bimDisplayComposition toggles the display of compositions on and off.

bimDrag drags faces of solids; when dragging major faces, it preserves connections with minor faces; when dragging minor faces,
it optionally connects minor faces to major faces of other solids.

bimExport removed from BricsCAD V19, replaced by Export command’s IFC option

bimFlip flips the starting face from which the layers of a composition are set out.

bimFlowConnect connects linear solids.

bimGetStatisticalData removed from BricsCAD V19.

bimGrid creates rectangular and radial grids with automatically-applied labels.

bimIfcImport removed from BricsCAD V19, replaced by Import command’s IFC option

bimIfy automatically classifies and spatial locates the entire bim model.

bimInsert and -bimInsert insert windows and doors in solids.

bimLinearSolid creates chains of linear solids.

bimList list names and properties of BIM entities in the current drawing.

bimMultiSelect selects one or more linear solids with coplanar and/or parallel axes based on the initial solid or face selected.

bimPatch reserves an of a BIM model for editing with the RefEdit command.

bimProfiles displays the Profiles dialog box for creating and editing profiles.

bimProjectInfo displays the BIM Project Info dialog box for specifying project library databases.

bimPropagate (replaces bimSuggest) maps details from selected solids to all similar solids, as well as on grids.

bimPropagateEdges propagates along the edges of planar solids, such as railings.

bimPropagateLinear propagates connections to linear elements,such as connections to walls and slabs.

bimPropagatePattern propagates a single element (such as a switch) to multiple locations and grids.

bimPropagatePlanar propagates connections to planar elements, such as walls, slabs, and roofs.

bimProperties displays the BIM Properties dialog box for specifying and editing properties of bim projects.

bimQuickDraw draws rooms and stories from rectangles and L-shapes.

bimRecalculateAxis recalculates the axes of structural elements back to their centroids.

bimReposition removed from BricsCAD V19, replaced by editable dimensions to neighboring edges.

bimRoom defines room areas with markers.

bimRoomBoundingElements determines which elements (walls, floors, etc) determine bounds of rooms.

appendix A Command Summary 471

bimSchedule generates linked schedule tables after analyze building elements in BIM models.

bimSection creates BIM section entities.

bimSectionOpen opens the drawing file related to a BIM section entity; or the 3D BIM model related to a BIM section drawing.

bimSectionUpdate updates and exports BIM sections.

bimSetReferenceFace controls the layout of plys through reference and opposing faces.

bimSplit splits segmented solids into separated solids automatically; splits solids using cutting faces.

bimStretch stretches BIM entities.

bimStructuralConnect connects linear solids.

bimSuggest removed from BricsCAD V19, replaced by the bimPropagate command.

bimTag tags BIM sections.

bimUpdateRoom updates data about the selected room.

bimUpdateThickness re-applies the overall thickness of a composition to the solid.

bimWindowArray removed from V19.

bimWindowCreate replaces closed entities with parametric window entities; displays the choose window style dialog box.

bimWindowPrint prints a specified area of the BIM model.

bimWindowUpdate updates openings made by windows or doors in solids in case the opening did not updated correctly
automatically.

ClipDisplay toggles the clipped display property of a section plane or a BIM section entity.

BM (BricsCAD Mechanical) Commands
(Available in Platinum edition only; bm = BricsCAD mechanical)

bmBalloon associates balloon with assembly components in Model space and in generated views in layouts.

bmBom inserts bill of material (BOM) tables in the current drawing.

bmBrowser removed from V19, replaced by the ComponentsPanelOpen command

-bmCreateComponent creates a component from a selection set; add it to the library.

bmDependencies lists all files, containing component definitions inserted in the assembly, in the command window.

bmDissolve dissolves a mechanical component inserted in the current drawing.

bmExplode creates a block of an exploded representation of an assembly.

bmExplodeMove allows users to created exploded representations of assemblies.

bmExternalize converts local components to external components.

bmForm creates a new mechanical component and inserts it into the current drawing; if necessary, run bmMech to initialize the
mechanical structure in the current drawing.

bmHardware and -bmHardware insert standard hardware parts as a mechanical component in the current drawing.

bmHide hides the visibility of mechanical components; hidden inserts are taken into account by commands such as bmBom and
bmMassProp.

bmInsert and -bmInsert insert an existing mechanical component as a virtual component into the current drawing.

bmLispGet retrieve variables for blocks and parameters of components.

bmLocalize converts external components to local components.

472 Customizing BricsCAD V19

bmMassProp computes mass properties for the current model using densities assigned to the components (defined by the
Density property of the components and subcomponents).

bmMech converts the current drawing into a mechanical component.

bmNew creates a mechanical component as a new drawing file.

bmOpen opens the source drawing of external mechanical components.

bmOpenCopy opens a copy of a component insert as a new drawing.

-bmParameters lists and edits parameters of inserted components.

bmRecover recovers broken mechanical structures.

bmReplace replaces a component insert.

bmShow shows previously hidden mechanical components.

bmUnlink breaks links between components.

bmUnmech converts the current mechanical component into a plain drawing.

bmUpdate reloads all referenced components from external files and updates BOM tables.

bmVStyle applies visual styles to mechanical component inserts.

bmXConvert converts X-Hardware solids in the current drawing to mechanical components.

C Commands
Cal displays the operating system’s Calculator program.

Callout places callouts; can be used only from the SheetSet panel.

Camera changes the viewpoint to perspective.

Center toggles Center entity snap; snaps to the center of circles, arcs, and other circular entities.

Centerline places associative center lines on circles and arcs

Centermark places associative center marks on circles and arcs

CenterReassociate reassociates centerlines/marks with circles and arcs

CenterResetresets centerline and mark entities, if moved

Chamfer bevels entities.

Change changes the position and properties of entities: endpoint, color, elevation, layer, linetype, linetype scale, lineweight, and
thickness.

ChProp changes just the properties of entities.

ChSpace moves entities from paper space to model space and vice versa.

Circle draws circles.

CleanScreenOn hides most user interface elements to maximize the drawing area.

CleanScreenOff restores the user interface to its default configuration.

CleanUnsedVariables clears unused variables from memory.

Close exits the current drawing, but not the program.

Color and -Color specifies the color for entities.

CommandLine and CommandLineHide open and close the command bar.

Commands reports the names of all commands supported by the program.

appendix A Command Summary 473

CommunicatorInfo reports the status of the Communicator add-on

ComponentsPanelOpen opens the Components panel for accessing symbols

ComponentsPanelClose closes the Components panel

Cone draws three-dimensional solid cones.

ContentBrowserClose and ContentBrowserOpen close and open the Content Browser panel.

ConvertCtb converts older CBT (color-based plot tables) files to newer STB (style-based plot tables) files.

ConvertOldLights converts old light definitions to the current format.

ConvertOldMaterials converts old material definitions to the current format.

ConvertPoly converts lightweight polylines to classic polylines (2D polylines) and vice versa.

ConvertPStyles converts drawings to from CTB (color-based plotting) to STB (plot styles).

ConvToMesh converts 3D solids and surfaces to mesh objects

ConvToSolid converts watertight meshes, circles, and closed polylines to 3D solids

ConvToSurface converts 3D solids, open polylines and other entities to 3D surfaces

Copy duplicates entities.

CopyBase copies entities with a specified reference point to the Clipboard.

CopyClip copies entities to the Clipboard.

CopyEData Copies extended entity data from one entity to others.

CopyHist copies the command history to the Clipboard.

CPageSetup edits the page setup of the current layout or model space.

CuiLoad and CuiUnload load and undload CUI and CUIX (user interface customization), MNU (menu), MNS (LISP code), and
ICM (IntelliCAD menu) files.

Customize customizes user interface elements, such as menus, toolbars, and shortcuts.

CutClip copies entities to the Clipboard and deletes the entities.

Cylinder draws three-dimensional solid cylinders.

Cloud (24/7, ex-Chapoo) Commands
All Chapoo- commands were renamed Cloud- in V18

CloudAccount reports the status of the 24/7 account at the command bar.

CloudDownload downloads drawings from the 24/7 project to a local folder.

CloudLogoff logs off from the 24/7 project.

CloudLogon logs on to 24/7.

CloudOpen opens a drawing after downloading it from 24/7.

CloudProject opens the 24/7 project in the default browser.

CloudUpload uploads the current drawing to 24/7.

CloudWeb connects to the 24/7 website at https://www.bricsys.com/en-intl/247/.

474 Customizing BricsCAD V19

D Commands
DataExtraction exports entity properties, block attributes and drawing information to CSV (comma separated values) file.

DataLink imports Excel spreadsheets and CSV files as linked table entities

DataLinkUpdate updates the data linked between a table and an external file

DbList lists information about all entities in the drawing (short for “database listing”).

DdAttE edits the values of attributes through a dialog box (short for “dynamic dialog attribute editor”).

DdEdit edits single-line text, multi-line text, attribute definitions, and attribute text (short for “dynamic dialog editor”).

DdEModes sets default values for creating entities (short for “dynamic dialog entity modes”).

DdFilter creates a selection set of the entities selected.

DdGrips specifies the properties of grips through the Settings dialog box.

DdPType specifies the look and size of point entities, through the Settings dialog box (short for “dynamic dialog point type”).

DdSelect specifies the properties for selecting entities, through the Settings dialog box.

DdSetVar displays the Settings dialog box to change the values of variables.

DdSTrack Sets the properties for snap tracking, through the Settings dialog box (short for “snap tracking”).

DdVPoint sets 3D viewpoints or plan view.

DefaultScaleList displays the Scale List Edit dialog box to edit the default scale factors

DesignTable creates new design tables for the Mechanical Browser.

-DesignTableEdit configures, replaces, exports, and deletes design tables at the command line.

Delay delays execution of the next command; for use with scripts only.

DelEData deletes extended entity data from the selected entity (short for “delete entity data”).

DgnImport imports Microstation design files and converts them to entities

Dish draws dishes (bottom half-sphere) from polygon meshes.

Dist reports the distance and angle between two points.

Distantlight places distant lights.

Divide places points or blocks along entities.

Dome draws domes (top half-sphere) from polygon meshes.

Donut draws circular polylines with width.

DragMode controls the appearance of objects while being dragged.

DrawOrder changes the display order of overlapping entities.

DrawOrderByLayer controls the draw order of overlapping objects through layer names.

DSettings displays the Settings dialog box for drafting settings (short for “drafting settings”).

DView changes the 3D viewpoint interactively, and turns on perspective mode (short for “dynamic view”).

DwgCodePage changes the code page for text in drawings.

DwgCompare compares differences between two drawings, and visually merges drawings.

DwgProps opens the Drawing Properties dialog box, showing the general information and user defined properties stored with
a drawing.

DxfIn and DxfOut imports DXF files (short for “drawing exchange format”) and exports drawings in ASCII or binary DXF format.

appendix A Command Summary 475

DIM (Dimension) Commands
(Dim = dimension)

Ai_Dim_TextAbove moves text above the dimension line.

Ai_Dim_TextCenter centers text on the dimension line.

Ai_Dim_TextHome moves text to its home position, as defined by the dimension style.

AiDimFlipArrow mirrors arrowheads on dimension lines.

AiDimPrec changes the precision of dimension text.

Dim places and edits dimensions at the ‘Dimensioning command:’ prompt.

Dim1 executes a single dimension command at the ‘Dimensioning command:’ prompt.

DimAligned draws dimensions parallel to (aligned with) selected entities; works with lines, polylines, arcs, and circles.

DimAngular dimensions angles.

DimArc places arc length dimensions.

DimBaseline places multiple linear or angular dimensions starting at the same base point; command can only be used when at
least one other dimension is already in the drawing.

DimCenter places center marks at the center points of circles and arcs.

DimContinue continues linear and angular dimensions from the endpoint of the previous dimension.

DimDiameter dimensions the diameter of circles and arcs, and places a center mark.

DimDisassociate removes associativity from selected dimension entities.

DimEdit changes wording and angle of dimension text; changes the angle of extension lines.

DimLeader draws leaders.

DimLinear places linear dimensions horizontally, vertically, or rotated.

DimOrdinate measures x and y ordinate distances from a common origin, specified by the current UCS origin.

DimOverride overrides the values of the current dimension style.

DimRadius dimensions the radii of arcs and circles.

DimReassociate reassociates or associates dimensions to entities or points on entities.

DimRegen updates associative dimensions (short for “dimension regeneration”).

DimStyle and -DimStyle creates and modifies dimension styles through the Drawing Explorer.

DimStyleSet reports the current dimension style in the command bar.

DimTEdit changes the position of dimension text.

DC (Dimensional Constraint) Commands
(dc = dimensional constraint)

CleanUnusedVariables purges variables not used by constraint expressions and not linked to dimensions.

dcAligned constrains the distance between two defining points on entities.

dcAngular constrains the angle between three constraint points on entities; or between two lines; or between two polyline seg-
ments; or constrains the angles of arcs or polyline arcs.

dcConvert converts an associative dimension to a dimensional constraint.

dcDiameter constrains the diameters of circles, arc, or polyline arcs.

476 Customizing BricsCAD V19

dcDisplay shows and hides dimensional constraints.

dcHorizontal constrains the horizontal distance between two defining points on entities.

dcLinear constrains horizontal or vertical distance between two defining points on entities.

dcRadial constrains the radius of circles, arcs, or polyline arcs.

dcVertical constrains the vertical distance between two defining points on entities.

DelConstraint removes all dimensional (and geometrical) constraints from an entity.

DimConstraint applies a dimensional constraint to an entity or between constraint points on entities; converts associative
dimensions to dynamic dimensions.

DM (Direct Modeling) Commands
(Available for Pro or Platinum editions only; dm = direct modeling)

dmAngle3D applies angle constraints between the faces of a solid or of different solids.

dmAudit checks and fixes 3D models.

dmAuditAll also checks and fixes 3D ACIS models in externally-referenced drawings

dmChamfer creates an equal distance chamfer between adjacent faces.

dmCoincident3D applies coincident constraints between two edges, two faces, or an edge and a face of two different solids.

dmConcentric3D applies concentric constraints between two cylindrical, spherical, or conical surfaces.

dmConstraint3D applies geometric relationships and dimensional constraints between sub-entities (such as faces, surfaces, and
edges) of 3D entities.

dmCopyFaces copies features like holes and ribs to the same or other 3D solids

dmDeformCurve deforms one or more connected faces of a 3D solid/surface by replacing their edges with given curves.

dmDeformMove deforms one or more connected faces of a 3D solid/surface by moving and rotating their edges.

dmDeformPoint deforms as smoothly as possible (using G1 or G2 continuity) a region, one or more connected faces of a 3D
solid or a surface by moving a point lying on one of them in arbitrary 3D direction.

dmDelete deletes faces and solids.

dmDistance3D applies a distance constraint between two sub-entities of a solid or of different solids.

dmExtrude creates 3D solids by extruding closed 2D entities, regions or closed boundaries.

dmFillet creates a smooth fillet between adjacent faces sharing a sharp edge.

dmFix3D applies a fixed constraint to a solid or to an edge or a face of a solid.

dmGroup creates new groups, edits them, and dissolves groups.

dmMove moves the selected solids, or faces or edges of a solid using a vector.

dmParallel3D applies a parallel constraint between two faces of a solid or of different solids.

dmPerpendicular3D applies a perpendicular constraint between two faces of a solid or of different solids.

dmPushPull adds or removes volume from a solid by moving a face.

dmRadius3D applies a radius constraint to cylindrical surfaces or circular edges.

dmRepair fixes inconsistencies in 3D geometry supported by ACIS kernel (3D solids, surfaces).

dmRevolve creates 3D solids by revolution of closed 2D entities or regions about an axis.

dmRigidSet3D defines a set of entities or sub-entities as a rigid body.

appendix A Command Summary 477

dmRotate rotates faces of a solid around an axis.

dmSelect selects edges and faces of 3D solids or surfaces based on their geometric properties.

dmSelectEdges selects faces and edges of 3D solids.

dmSimplify simplifies the geometry and topology of 3D solid entities by removing unnecessary edges and vertices, merges seam
edges, and replaces the geometry of faces and edges by analytic surfaces and curves, if possible within the user-specified tolerance.
Run this command on imported 3D solid geometry.

dmSimplifyAll also unnecessary elements in externally referenced drawings

dmStitch converts a set of region and surface entities that bound a watertight area to a 3D solid.

dmTangent3D applies a tangent constraint between a face and a curved surface of different solids.

dmThicken creates 3D solids by thickening (i.e. adding thickness to) surfaces, their faces, and faces of 3D solids.

dmTwist twists 3D solids, surfaces, and regions by an angle.

dmUpdate forces 3D constraints to update.

E Commands
EAttEdit edits the value and most properties of attributes (short for “enhanced attribute editor”).

EdgeSurf creates a 3D Coons mesh surface patch between four lines, forming a closed shape (short for “edge surface”).

EditEData creates and edits extended entity data (short for “edit entity data”).

Elev changes the default elevation and thickness.

Ellipse draws ellipses and elliptical arcs.

EndCompare ends the drawing compare session

Endpoint toggles endpoint entity snap; snaps to the ends of open entities, such as line, arcs, and open polylines.

Erase erases selected entities from drawings; alternatively, press the Del key.

eTransmit creates a package of a drawing file and all its dependencies, such as external references, images, font files, plot configu-
ration files, plot style tables and font map files.

ExpBlocks opens the Blocks section of the Drawing Explorer dialog box (short for “explorer blocks”).

ExpFolders opens the Drawing Explorer on the Folders tab.

Explode breaks complex objects into their component entities.

Explorer opens the Drawing Explorer dialog box, which controls Layers, Layer States, Linetypes, Multiline Styles, Multileader
Styles, Text Styles, Dimension Styles, Table Styles, Coordinate Systems, Views, Visual Styles, Lights, Materials, Render Presets, Blocks,
External References, Images, PDF Underlays, Dependencies, Page Setups, and Section Planes.

Export saves entities in other file formats.

ExportLayout exports visible objects from the current layout to model space of new drawings.

ExportPDF exports the current layout to a PDF file.

ExpUcs creates, modifies, and deletes named UCSes through the Drawing Explorer (short for “explore user-defined coordinate
systems”).

Extend extends entities to bounding edges defined by other entities.

Extension toggles extension entity snap, which snaps to the point where a line extended would intersect another entity.

Extrude extrudes closed entities as 3D solids and open ones as 3D surfaces.

478 Customizing BricsCAD V19

F Commands
FbxExport and -FbxExport export 3D models in FBX format for rendering programs

Field inserts text that is updated automatically when system variables change.

FileOpen opens drawing (DWG), template (DWT), and interchange (DXF) files from the command line.

Files opens the operating system’s file manager, such as Windows Explorer or Finder.

Fill fills areas with a solid color or color gradient

Fillet rounds entities.

Find finds and replaces text in notes, annotations, and dimension text.

Flatshot creates a hidden line representation of all 3D solids in model space as a block or a new drawing.

Flatten flattens 2D objects with thickness and allows to convert splines to polylines.

G Commands
GCE snaps the the geometric center of entities.

GenerateBoundary creates closed polylines from faces of 3D solids, as well as from boundaries detected when the Enable
Boundary Detection of SelectionModes is activated.

GeographicLocation sets the geographic location of the drawing.

Gradient fills closed areas with gradient fills of one or two colors.

GradientBkgOff and GradientBkgOn turn off and on the gradient displayed in the working area.

Grading interactively shapes terrains

GraphScr switches from the text windows to the graphics windows (short for “graphics screen”).

Grid turns the grid display on or off and sets other grid options.

Group and -Group creates and modifies named groups of entities.

GC (Geometric Constraint) Commands
(For 3D constraints, see Direct Modeling Commands section; gc = geometric constraints)

ConstraintBar shows, hides, and resets the display of geometric constraint icons.

DelConstraint removes all geometrical (and dimensional) constraints from an entity.

gcCenter snaps to the centroid of closed entities.

gcCoincident constrains points on entities coincidently; or constrains a point on an entity to another entity.

gcCollinear constrains lines collinearly.

gcConcentric constrains the center points of arcs, circles, ellipses, and/or elliptical arcs to be coincident.

gcEqual constrains lines to have the same length, or arcs and circles to have the same radius.

gcFix constrains points on entities to fixed positions.

gcHorizontal constrains lines or linear polyline segments, or pairs of points on entities to be parallel to the x axis in the current
coordinate system.

gcParallel constrains two lines or linear polyLine segments to be parallel to each other.

gcPerpendicular constrains two lines or linear polyline segments to be perpendicular to each other.

appendix A Command Summary 479

gcSmooth constrains a spline to be fluidly continuous to another spline, or arc, or line, or polyline.

gcSymmetric constrains two entities, or two points on entities, to be symmetric about a line of symmetry.

gcTangent constrains one entity tangent to another.

gcVertical constrains lines or linear polyline segments, or pairs of points on entities to be parallel to the y axis in the current
coordinate system.

GeomConstraint acts as a universal command that applies all available geometric constraint points.

H Commands
Hatch and -Hatch fills a selected boundary with a pattern.

HatchEdit and -HatchEdit edits hatch patterns and gradient fills.

HatchGenerateBoundary generates a boundary around a hatch or gradient fill.

HatchToBack sets the draw order of all hatch entities in the drawing to display behind all other entities.

Helix draws 2D spirals or 3D helixes.

Help displays online help.

HelpSearch prompts for searching through the help files at the command prompt.

Hide removes hidden lines from 3D entities until the UnisolateObjects command is used.

HideObjects temporarily hides selected entities.

Hyperlink and -Hyperlink adds hyperlinks to entities or modifies existing hyperlinks.

HyperlinkOptions controls the display of the hyperlink cursor, shortcut menu, and tooltips.

I Commands
Id reports the x,y,z coordinates of a picked point.

Image inserts raster images in drawings through the Drawing Explorer.

ImageAdjust adjusts the properties of images through the Properties palette.

ImageAttach and -ImageAttach attache raster images to the drawing like xrefs.

ImageClip clips images.

ImageFrame toggles the frame around images.

ImageQuality determines the display quality of images attached to the drawing.

Import displays a dialog box for importing files into the drawing: DWG, DXF, DWT, and DAE (Collada) files. Platinum edition also
imports IFC and SKP (SketchUp) files. Additional formats can be imported when the optional Communicator modules is purchased.

Imprint imprints 2D entities onto planar faces of 3D solids and surfaces; allows to create additional edges on
planar faces.

Insert and -Insert inserts blocks or another drawing into the current drawing.

InsertAligned inserts blocks repeatedly, and inserts mirrored blocks.

Insertion toggles Insertion entity snap; snaps to the insertion point of text and blocks.

InsertObj displays data from other programs in drawings, such as text documents, spreadsheets, and images (windows only).

Interfere checks interferences between solid models.

Intersect creates regions or 3D solids from the intersection of regions or 3D solids.

480 Customizing BricsCAD V19

Intersection Toggles Intersection entity snap; snaps to the intersections of entities.

IsolateObjects hides all other entities from view.

Isoplane controls the isometric plane (left, right, or top) when isometric snap is used.

J Command
Join joins lines, lwpolylines, 2D polylines, 3D polylines, circular arcs, elliptical arcs, splines and helixes at common endpoints.

K Command
KeepMe visually merges drawings during the DrawingCompare command

L Commands
Layer: see Layer Commands below.

Layout creates, copies, renames, and deletes layouts.

LayoutManager displays the Layout Manager dialog box for creating, naming, and reordering sets of layouts

LConnect creates connections between faces of two solids

Leader draws leader lines that connect annotations to drawing entities.

Lengthen changes the length of open objects, such as lines and arcs.

LicenseManager provides access to all Bricsys software licenses, as shown below.

LicEnterKey enters the license key number (short for “licence enter key”).

LicProperties reports the BricsCAD license information; modifies and deactivates single user and volume license keys.

LicPropertiesCommunicator reports license information for the optional extra-cost Communicator add-on.

Light places lights in drawings.

LightList displays the lighting palette.

Limits sets the extents of the drawing and the grid.

Line draws straight line segments.

LineType and -LineType creates, loads, and sets linestyles.

List lists the properties of selected entities at the command line.

LiveSection toggles the Live Section property of a section plane.

Load loads compiled SHX shape files into the drawing.

Loft creates 3D solids passing through two or more cross sections.

LogFileOff and LogFileOn turn off and on log file recording.

LWeight sets lineweight options.

appendix A Command Summary 481

Layer Commands
LayCur moves the selected entities to the current layer.

Layer and -Layer controls layers and layer properties.

LayerP undoes previously applied changes to layer settings when LayerPMode is on (short for “layer previous”).

LayerPMode controls the tracking of changes made to layer settings.

LayersPanelClose and LayersPanelOpen closes and open the Layers panel.

LayerState saves and restores the properties of layers.

LayFrz and LayThw freeze and thaw the layers associated with entities selected in the drawing.

LayIso and LayUnIso isolate and restore layers associated with entities selected in the drawing; locks or turns off all other layers
(short for “layer isolate”).

LayLck and LayUlk lock and unlock the layers of selected entities.

LayMCur changes the working layer to that of a selected entity (short for “layer make current”).

LayOff and LayOn turn off and on layers associated with entities selected in the drawing; off layers cannot be seen.

M Commands
Mail attaches the current drawing to a new message with your computer’s default email client.

Manipulate launches the widget for rotating, copying, moving, mirroring, and scaling entities.

MapConnect sets up a connection with a Web Map Service, after the GeographicLocation command defines the geographic
location in the drawing.

MassProp reports the area, perimeter, and other mathematical properties of 3D solids and 2D regions (short for “mass properties”).

MatBrowserClose and MatBrowserOpen close and open the materials browser.

MatchPerspective changes the viewpoint in perspective mode to match a background image.

MatchProp assigns the properties of one entity to one or more other entities (short for “match properties”).

MaterialAssign assigns materials from the Material Browser onto 3D objects

MaterialMap maps material definitions onto the surfaces of objects, with presets for boxes, planes, spheres, and cylinders.

Materials creates materials and edits their properties through the Drawing Explorer.

MatLib displays the Rendering Materials panel.

Measure places points or blocks along entities.

MechanicalBrowserClose closes the Mechanical Browser panel.

MechanicalBrowserOpen displays the Mechanical Browser panel.

Menu loads menu files to modify the user interface.

MenuLoad and MenuUnload load and unload CUIX and CUI (user interface customization), MNU (menu), MNS (LISP code),
and ICM (IntelliCAD menu) files.

Midpoint toggles Midpoint entity snap; snaps to the middle of lines, arcs, and other open entities.

MInsert inserts a block as a rectangular array; combines the -Insert and Array commands (short for “multiple insertion”).

Mirror draws mirror image copies of entities.

Mirror3D draws mirror images of entities about a plane in 3D space.

MLeader creates multileader entities using the current multileader style.

482 Customizing BricsCAD V19

MLeaderAlign aligns multiple leaders

MLeaderCollect collects multiple leader blocks

MLeaderEdit adds leader lines to and removes leader lines from a multileader entity.

MLeaderEditExt adds and removes leader lines, adds and removes vertices from a multileader entity.

MLeaderStyle creates and manages multileader styles through the Drawing Explorer.

MLine draws multilines.

MLStyle creates and edits multiline styles.

ModelerProperties and -ModelerProperties controls the various settings of the ACIS modeler through the Settings dialog box.

Move displaces entities a specified distance in a specified direction.

MoveEData moves extended entity data from one entity to another.

MSlide makes SLD (slide) files from the current view.

MSpace switches to model space inside a viewport of layout tab.

MText and -MText opens the multi-line text editor interface for placing paragraph text.

Multiple command prefix forces commands to repeat themselves automatically.

MView creates viewports in layout tab.

MvSetup prepares sets of paper space viewports; superseded by the ViewBase command.

MTP snaps to the midpoint between two points.

N Commands
Navigate walks and flys through 3D models.

Nearest toggles Nearest entity snap mode; snaps to the nearest geometry on entities.

NetLoad loads .NET applications.

New starts new drawing files.

NewSheetSet creates a new sheet set.

NewWiz starts new drawings with the New Drawing Wizard.

Node toggles Node entity snap mode; snaps to point entities.

None turns off all entity snap modes.

Number adds incremented number tags for BIM entities

O Commands
ObjectScale and -ObjectScale adds or removes supported scales for annotative entities.

Offset offsets linear entities in parallel orientation.

OleLinks adjusts links of OLE entities embedded in or linked to drawings (short for “object linking and embedding”). (windows only).

OleOpen opens OLE objects for modification (windows only).

OnWeb opens the Bricsys home page in your computer’s default Web browser.

Oops un-erases the last erased entity, including those erased by the Block command.

Open opens an existing drawing file.

appendix A Command Summary 483

OpenSheetSet and -OpenSheetSet open an existing sheet set.

Options configures program operating parameters.

Orthogonal constrains the pointer so it moves parallel to the axes of the current coordinate system.

OSnap and -OSnap sets entity snaps through the Settings dialog box or the command line (short for “object snap”).

Overkill and -Overkill deletes duplicate entities and overlapping lines, arcs or polylines and unifies partly overlapping or contigu-
ous ones.

P Commands
PageSetup creates and edits page setups for plotting drawings in the Drawing Explorer.

Pan and -Pan moves the drawing display in the active view tile.

Panelize command draws freeform surfaces as subdivision meshes, optionally planarizing the panels.

Parallel turns on parallel entity snap.

-Parameters create and edit constraint expressions and values.

ParametersPanelOpen opens the Parameters panel

ParametersPanelClose closes the Parameters panel

Parameterize adds constraints and parameters to models automatically

PasteBlock inserts data from the Clipboard as block.

PasteClip inserts data from the Clipboard.

PasteOrig pastes entities from the clipboard at the coordinates from the source drawing.

PasteSpec pastes entities from the clipboard, after the user specifies the format.

PdfAdjust adjust the fade, contrast and monochrome settings of PDF underlays.

Pdfattach and -PdfAttach attaches PDF files as underlays into the drawing.

PdfClip clips PDF underlays.

PdfLayers controls the display of layers in PDF underlays.

PdfOptions controls the exporting of drawings in PDF format through the Settings dialog box.

PEdit edits polylines, 3D polylines, and 3D meshes (short for “polyline edit”).

PEditExt edits vertices and segments of a polyline.

Perpendicular toggles perpendicular entity snap mode.

PFace draws 3D multi-sided meshes; meant for use by programs (short for “polyface mesh”).

Plan sets plan view to construction plane.

PLine draws polyline lines, arcs, and splines with optional width (short for “polyline”).

Plot and -Plot both execute the plot command at the command line.

PlotStamp specifies a header and footer for plotted output.

PlotStyle sets the current plot style; works only when plot styles are enabled in drawings.

PlotterManager creates customized parameter PC3 files for printers and other output devices; executes the PlotConfig.exe
utility program.

Point draws point entities.

PointCloud displays the Point Cloud section of the Drawing Explorer

484 Customizing BricsCAD V19

PointCloudAttach attaches BPT point cloud files to the current drawing

PointCloudColorMap changes the colors of point based on their elevation

PointCloudPointSize specifies the size of points in a point cloud

PointCloudPointSize_Minus decreases the size of points in a point cloud

PointCloudPointSize_Plus increases the size of points in a point cloud

PointCloudPreprocess converts ASCII PTS, PTX, and LAS files into compressed binary BPT files

PointLight places point lights in drawings.

Polygon draws equi-sided polygons from polylines of 3 to 1,024 sides.

PolySolid creates 3D wall-like solids.

Preview shows a preview before printing the drawing.

Print plots the drawing to a plotter, printer, or file.

ProfileManager sets current, create, copy, delete, import and export user profiles.

ProjectGeometry projects geometry like curves, and edges onto regions, surfaces, and 3D solids.

Properties displays the Properties palette to change drawing entity properties.

PropertiesClose closes the Properties palette.

PSetupIn and -PSetupIn imports page setup definitions from another drawing.

PSpace switches from model to paper space (short for “paper space”).

Publish and -Publish prints sheet lists of model space or paper space layouts; saves a sheet list to a file.

Purge and -Purge remove unused named entities from drawings, such as unused layers and linetypes.

Pyramid draws three-dimensional solid pyramids.

Q Commands
QLeader draws leaders; specifies properties through a dialog box.

QNew opens new drawings in BricsCAD (short for “quick new”).

QPrint prints the drawing with the default plot configuration, without displaying the Print dialog box (short for “quick print”).

QSave saves the drawing without displaying the Save dialog box (short for “quick save”).

QSelect composes a selection set using filters.

QText toggles the display of text as rectangles (short for “quick text”).

Quadrant toggles snaps to quadrant points of circles, arcs, and polyarcs.

Quick toggles snaps to the first entity geometry found; used together with at least one other entity snap mode.

Quit ends BricsCAD; optionally saves unsaved drawings.

R Commands
Ray draws semi-infinite construction lines

ReAssocApp associates extended entity data with applications (short for “reassociate application”).

Recover repairs damaged drawings.

RecScript records keystrokes to an SCR file for playback with the Script command (short for “record script”).

appendix A Command Summary 485

Rectang draws a rectangular polyline.

Redefine restores built-in commands that have been undefined using the Undefine command.

Redo reverses the effects of a previous U command.

Redraw refreshes the display of the active view tile.

RedrawAll refreshes the display of all currently-open view tiles.

RedSdkInfo reports on rendering related hardware and driver specifications (short for “Red software development kit information”).

RefClose closes the in-situ block and xref editor.

RefEdit and -RefEdit edits blocks and externally-referenced drawings (short for “reference editor”).

RefSet adds and removes entities from the block or external reference being edited.

Regen regenerates the current viewport.

RegenAll regenerates all viewports.

RegenAuto determines when BricsCAD regenerates the drawing automatically.

Region converts an entity enclosing an area into a region.

ReInit reloads the PGP alias file (short for “re-initialize”).

Rename and -Rename changes the names of objects.

Render and -Render generates photorealistic renderings od 3D models using materials and lights.

RenderPresets creates and edits rendering presets, and to set the current render preset.

ReportPanelClose and ReportPanelOpen close and open the Report panel.

ResetAssocViews removes associative data from blocks

ResetBlock resets dynamic blocks to their default values.

Resume resumes an interrupted script.

RevCloud draws revision clouds commonly used for red-lining drawings.

Revolve draws 3D solids or surfaces by revolving 2D objects about an axis.

RevSurf creates 3D mesh surfaces by revolving open entities around a axis (usually a line).

Ribbon displays the ribbon user interface.

RibbonClose closes the ribbon.

Rotate rotates entities about a base point.

Rotate3D moves entities about a 3D axis.

RScript reruns the currently loaded SCR script file (short for “repeat script”).

RtLook moves the viewpoint through a 3D scene (short for “real time looking”).

RtPan pans the view in real time.

RtRot, RtRotCtr, or RtRotF rotate the viewpoint in real time.

RtRotX, RtRotY, or RtRotZ rotates the 3D viewpoint about the x, y, or z axis in real time.

RtUpDown tilts the viewpoint up, down, left, or right in real time.

RtWalk walk lefts, right, forward or backward through 3D scenes in real time.

RtZoom zooms into the drawing in real time.

RuleSurf draws ruled surfaces between two curves.

486 Customizing BricsCAD V19

S Commands
Save saves the drawing under the current file name or a specified name.

SaveAll saves all open drawings.

SaveAs saves an unnamed drawing with a file name or renames the current drawing.

SaveAsR12 saves drawings in DWG R12 format.

SaveFileFolder opens the File Explorer to the folder in which the current drawing is being saved

Scale enlarges or reduces specified entities equally in the X, Y, and Z directions.

ScaleListEdit and -ScaleListEdit edits the list of scale factors used by annotative scaling, sheet scales, and plot scales.

Script loads and runs SCR script files.

Scrollbar toggles the display of the horizontal and vertical scroll bars.

Section creates a cross section based on the intersection of a plane and 3D solids.

SectionPlane creates a section entity that creates sections of 3D solids.

SectionPlaneSettings defines the properties of section plane entities in the Drawing Explorer.

SectionPlaneToBlock saves the selected section plane as a 2D cross section / elevation block or a 3D cutaway section block

Security determines whether VBA macros can run automatically; not available in the 64-bit version.

SecurityOptions sets a password to protect the drawing (windows only).

Select places selected entities in the ‘Previous’ selection set.

SelectAlignedFaces selects all faces in a model which are coplanar with a selected face.

SelectAlignedSolids selects all solids in a model of which a face is coplanar with a selected face.

SelectConnectedFaces selects all faces in a model which are connected to a selected face.

SelectConnectedSolids selects all solids in a model which are connected to a selected face.

SelectSimilar selects entities of the same type and properties.

SelGrips prompts to selects entities and then displays grips.

Settings displays the Settings dialog box for changing the values of variables.

SettingsSearch opens the Settings dialog box at the specified category, variable name, or user preference.

SetUCS sets the UCS to a viewpoint specified through a dialog box.

SetVar displays and changes the values of system variables (short for “set variables”).

Sh and Shell open the Windows command prompt window; runs other applications (short for “shell”).

Shade shades the drawing mode.

ShadeMode sets the current visual style at the command line, such as Realistic, Conceptual, Edges, and X-ray.

-ShadeMode sets the old type of shade modes: 2D, 3D, Hidden, Flat, Flat with Edges, Gouraud, and Gouraud with edges.

Shape places shapes from SHX files in drawings.

SheetSet and SheetsetHide manage sheet sets, and closes the Sheet Set pane.

Singleton toggles whether multiple copies of BricsCAD can run at the same time.

Site imports terrain models from points and Civil 3D surfaces, or creates them from entities

SiteEdit edits terrain sites

Sketch draws freehand lines.

Slice slices 3D solids with a plane or surface.

appendix A Command Summary 487

Snap restricts pointer movements and pointing in the drawing to specified intervals.

Solid draws solid-filled 2D faces.

SolidEdit edits 3D solids and 2D regions.

SolProf creates hidden line representations of 3D solids in a layout viewport.

Spell checks the spelling of text in the drawing.

Sphere draws three-dimensional solid spheres.

Spline draws quadratic or cubic non-uniform rational Bezier spline (NURBS) curves.

SpotLight inserts spot lights into drawings.

Start runs operating system applications.

StatBar toggles the display of the status bar.

Status reports status of the drawing’s settings in the Text window.

StlOut export 3D models in STL format for 3D printing (short for “stereolithography”).

StopScript stops recording of scripts begun with the RunScript command.

Stretch moves or stretches entities.

StandardPartsPanelClose and StandardPartsPanelOpen close and open the Standard Parts panel.

StructurePanel and StructurePanelClose open and close the Structure panel displaying tree structure of the drawing content

+StructurePanel opens a CST structure tree configuration file

Style and -Style creates and edits text styles through the Drawing Explorer.

StylesManager creates and attaches plot style files.

Subtract creates a composite region or a 3D solid by subtraction.

SunProperties edits sun properties through the Drawing Explorer.

SupportFolder opens the C:\Users\<login>\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\Support folder.

SvgOptions controls the output as SVG files.

Sweep creates solid primitives or surfaces by sweeping two dimensional entities along a path.

SysWindows arranges windows.

SM (Sheet Metal) Commands
(Available for Mechanical edition; requires an additional license; sm = sheet metal)

LicPropertiesSheetmetal reports the license state of the sheet metal module.

smAssemblyExport converts 3D solid sheet metal parts to DXF files with unfolding information

smBendCreate converts hard edges (sharp edges between flange faces) into bends.

smBendSwitch converts bends to lofted bends.

smConvert automatically recognizes flanges and bends in a 3D solid.

smDelete removes a bend or a junction by restoring the hard edge between two flanges; removes a flange with all the bends
adjacent to it.

smDissolve removes sheet metal data from the selected features.

smExport2D exports unfolded representations of sheet metal bodies as 2D profiles in DXF or DWG files.

smExportOSM exports sheet metal solids to OSM files (short for “Open Sheet Metal”) used by CADMAN-B CAM systems.

488 Customizing BricsCAD V19

smExtrude extrudes polylines to sheet metal parts

smFlangeBase creates base (initial) flanges of sheet metal parts from closed 2D entities.

smFlangeBend bends existing flanges along a line, taking into account the k-factor.

smFlangeConnect closes gaps between two arbitrarily oriented flanges.

smFlangeEdge creates one or more flanges to a sheet metal part by pulling one or more edges of an existing flange.

smFlangeRotate rotates a selected flange of a sheet metal part with automatic selection of the rotation axis depending on the
design intent.

smFlangeSplit removed from V19; replaced by smSplit

smFlip switches flange sides to reverse reference faces

smForm adds forms to sheet metal.

smImprint uses imprinted edges to split thickness faces of sheet metal parts

smJunctionCreate converts hard edges (sharp edges between flange faces) and bends into junctions.

smJunctionSwitch changes symmetrical junction features to overlapping faces.

smLispGet returns values related to sheet metal variables.

smLispSet changes values related to sheet metal variables.

smLoft creates sheet metal part with lofted bends and flanges from two non-coplanar curves.

smParametrize generates consistent sets of 3D constraints for sheet metal parts

smReliefCreate creates proper corner (three or more adjacent flanges) and bend reliefs (at the start and end of a flange edge).

smRepair restores the 3D solid model of a sheet metal part by thickening one of its sides: all thickness faces become perpen-
dicular to flange faces.

smReplace replacing form features with ones from libraries.

smRethicken removed from V19.

smRibCreate adds associative rib (form) features on sheet metal parts based on 2D profiles

smSelect selects hard edges and form features of sheet metal parts

smSelectHardEdges selects all hard edges on sheet metal parts.

smSplit splits flanges and lofted bend; replaces the old smFlangeSplit command

smUnfold generates unfolded 2D or 3D representations of sheet metal parts.

T Commands
Table and -Table draws tables in drawings.

Tabledit edits text in table cells.

TableExport exports the contents of a table entity to CSV (command separated values) files.

TableMod modifies the properties of table cells.

TableStyle creates and manages table styles through the Drawing Explorer.

Tablet configures and calibrates tablets, and toggles tablet mode (windows mode).

TabSurf draws tabulated surfaces from a path curve and a direction vector.

Tangent toggles tangent entity snap; snaps to the tangency of circles, arcs, ellipses and elliptical arcs.

TConnect connects solids by their faces

appendix A Command Summary 489

TemplateFolder opens the C:\Users\<login>\AppData\Local\Bricsys\BricsCAD\V19x64\en_US\Templates folder.

Text and -Text places lines of text in the drawing.

TextScr displays the text window showing command history (short for “text screen”).

TextToFront sets the draw order of all texts and dimensions in the drawing to display in front of all other entities.

TfLoad and TfSave open and save handle, xsd, and strip data from DWT template files

Time reports on the time spent in the drawing.

TInsert inserts blocks in the cells of tables.

Tolerance draws tolerances (datum indicators and basic dimension notation).

Toolbar and -Toolbar displays and hides toolbars.

ToolPalettes opens the Tool Palettes bar.

ToolPalettesClose closes the Tool Palettes bar.

-ToolPanel opens tool panels by name at the command bar.

Torus draws three-dimensional torrid solids.

TpNavigate opens tool palettes or group at the command bar.

Trace draws traces.

Transparency toggles the transparency of monotone images; has nothing do with the transparency property

Trim trims entities at a cutting edge defined by other entities.

TxtExp explodes text into polyline segments.

U Commands
U reverses the most recent command.

Ucs creates and displays named UCSes through the command bar (short for “user-defined coordinate system”).

UcsIcon toggles the display of the UCS icon.

Undefine disables built-in commands.

Undo restores deleted entities.

Union creates composite regions or solids by addition.

UnisolateObjects makes entities visible again following the IsolateObjects and HideObjects commands

Units and -Units sets coordinate and angle display formats and precision.

UpdateField forces the values of field text to update.

Url opens the default Web browser (short for “uniform resource locator”).

V Commands
View and -View saves, restores, and manages user-defined model and sheet views, and presets views.

ViewLabel adds labels to views; available through the Sheet Set manager only.

ViewRes sets the view resolution and toggles fast-zoom mode (short for “view resolution”).

VisualStyles and -VisualStyles creates and edits visual style definitions in the Drawing Explorer or at the command line.

VmlOut exports drawings in VML format embedded in Web pages (short for “vector markup language”).

490 Customizing BricsCAD V19

VpClip clips viewports in layouts (short for “view port clipping”).

VpLayer changes the properties of layers in the current paper space viewport (short for “view port layer”).

VPoint Changes the 3D viewpoint through a dialog box.

VPorts and -VPorts create one or more viewports in model space (short for “viewports”).

VSlide displays images saved as SLD or WMF files (short for “view slide”).

Vba Commands
(Available in Pro and Platinum editions only; vba = Visual Basic for Applications)

VbaIde opens the BLADE editing window; short for “integrated development environment” (windows only).

VbaLoad and -VbaLoad loads VBA projects (windows only).

VbaMan manages VBA projects; short for “manager” (windows only).

VbaRun and -VbaRun runs, creates, edits, and deletes VBA macros (windows only).

VbaSecurity sets the security level for running VBA macros.

VbaUnload unloads VBA projects (windows only).

ViewBase Commands
(Available in Pro and Platinum editions only)

ViewBase generates associative orthographic and standard isometric views of a 3D solid model in a paper space layout.

ViewDetail creates a detail view of a portion of a standard generated drawing at a larger scale.

ViewDetailStyle specifies the visual format of detail views and detail symbols.

ViewEdit changes the scale and hidden line visibility of drawing views; works in paper space only.

ViewExport exports the content of drawing views to Model space or to a new drawing; operates in paper space only.

ViewProj generates additional projected views from an existing drawing view.

ViewSection creates cross section views based on standard drawing views generated by the ViewBase command in a paper space
layout.

ViewSectionStyle specifies the visual format of section views and section lines.

ViewUpdate updates drawing views.

W Commands
WBlock and -WBLock export blocks, selected entities, or the entire drawing as a DWG file.

WCascade, WClose, WCloseAll, WNext, and WPrev cascade the windows, close the current window, close all windows,
and switch to the next or previous windows.

Weblight places Web lights.

Wedge draws three-dimensional solids with a sloped face tapering along the X axis.

WhoHas reports the ownership of a drawing file.

appendix A Command Summary 491

WhTile, WiArrange, and WvTile tiles windows horizontally, arranges tiled windows in an overlapping manner, or tiles them
vertically.

WipeOut creates blank areas in drawings.

WmfOut exports the drawing in WMF (WIndows meta file), EMF (enhanced meta file), or SLD (slide) format.

WorkSets creates and loads named sets of drawing files.

Workspace sets the current workspace; creates, modifies, and saves workspaces.

WsSaves saves the current user interface by name.

WsSettings opens the Customize dialog box at the Workspace tab.

X Commands
XAttach attaches externally-referenced drawings.

XClip clips externally-referenced drawings.

XEdges extracts edges from 3D solids as lines.

XLine draws infinitely long lines.

XmlSave prompts for handles to save in an XML file.

XOpen opens externally-referenced drawings in a new window.

Xplode explodes entities, and provides control over the resulting entities.

XRef and -XRef attaches DWG files to the current drawing through the Drawing Explorer or the command line.

Z Commands
Zcenter toggles the 3D center entity snap; snaps to the center of planar or curved 3D faces.

Zknot toggles the 3D knot entity snap; snaps to a knot on a spline.

Zmidpoint toggles the 3D midpoint snap; snaps to the midpoint of a face edge.

Znearest toggles the 3D nearest entity snap; snaps to a point on the face of a 3D entity that is nearest to the cursor.

Znone disables all 3D snap modes.

Zoom increases or decreases the visible part of the drawing.

Zperpendicular toggles the 3D perpendicular entity snap; snaps to a point perpendicular to a face.

Zvertex toggles the 3D vertex entity snap; snaps to the closest vertex of a 3D entity.

Commands
? displays the Help window.

2dIntersection toggles apparent intersection entity snap; snaps to the intersections of entities, even when they only appear to
intersect in 3D space.

3D draws 3D polygon mesh objects: boxes, cones, cylinders, dishes, domes, pyramids, spheres, tori, wedges, or meshes.

3DArray constructs 3D rectangular arrays and rotated polar arrays.

492 Customizing BricsCAD V19

3DCompare compares the 3D content of two drawing files.

3DConvert converts 3D solids to polyface meshes.

3DFace draws 3D 4-edged faces with optional invisible edges.

3DIntersection toggles Intersection entity snap; snaps to the intersections of entities.

3DMesh draws 3D surface meshes.

3DOsnap and -3DOsnap sets the entity snap modes for 3D entities through the Settings dialog box.

3DPoly draws 3D polylines.

APPENDIX B

System Variables
and Settings

BRICSCAD USES VARIABLES TO STORE AND REPORT SETTINGS AFFECTING THE PROGRAM
and drawings. There are two types of variables: system variables that mimic the names and values
from AutoCAD, and preference variables unique to BricsCAD. You access and change variables
through a dialog box (Settings command) or directly on the command line (SetVar command).

This appendix lists over 800 variable names in alphabetical order.

 UPPERCASE	text	indicates	the	name	is	also	found	in	AutoCAD	as	a	system	variable

	 MixedCase	text	means	the	variable	is	a	preference,	and	so	is	unique	to	BricsCAD

	 Blue text	indicates	that	the	variable	is	new	in	V19

	 StrikeThrough	text	indicates	the	variable	was	removed	from	BricsCAD

	 userid refers	to	your	computer	login	name

When you see R/O (read-only), it means that you cannot change the variable’s value.

494 Inside BricsCAD V19

System Variable Name Read-Only Default Value

A Variables
ACADLSPASDOC 0
ACADPREFIX r/o “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\Support\;
 C:\Program Files (x86)\Bricsys\BricsCAD V19x64\Support\,;
 C:\Program Files (x86)\Bricsys\BricsCAD V19x64\Fonts\;
 C:\Program Files (x86)\Bricsys\BricsCAD V19x64\Help\en_US\”
ACADVER r/o “20 .0 BricsCAD”
AcisHlrResolution -1
ACISOUTVER 70
AcisSaveAsMode 0
AdaptiveGridStepSize 4 .0000
AFLAGS 0
ALLOWBREAKLINECROSSINGS “1”
ALLOWEDBENDANGLES “1”
AllowTabExternalMove 1
AllowTabMove 1
AllowTabSplit 1
ANGBASE 0
ANGDIR 0
Anglesamplinginterval “5”
ANNOALLVISIBLE 1
ANNOAUTOSCALE -4
AnnoSelected r/o 0
ANNOTATIVEDWG 0
AntiAliasRender 2
AntiAliasScreen 1
APBOX 0
APERTURE 10
AREA r/o 0
AREAPREC -1
AREAUNITS “in ft mi µm mm cm m km”
ARRAYASSOCIATIVITY 1
ARRAYEDITSTATE r/o 0
ARRAYTYPE 0
Associativity “3”
ATTDIA 0
ATTMODE 1
AttractionDistance 3
ATTREQ 1
AUDITCTL 0
AuditErrorCount r/o 0
AUNITS 0
AUPREC 0
AUTOCOMPLETEDELAY 0 .3
AUTOCOMPLETEMODE 47
AutomaticConnection “1”
AUTOMENULOAD 1
AutoResetScales 0
AutosaveChecksOnlyFirstBitDBMOD 1
AUTOSNAP 119
AutoTrackingVecColor 171
AutoUpdateRooms “1”
AutoVpFitting 1
AXISMODE 0
AXISUNIT X= 0 Y= 0 Z= 0

appendix A Concise Summary of System Variables and Settings 495

System Variable Name Ready-Only Default Value

B Variables
BACKGROUNDPLOT 2
BACKZ r/o 0
BASEFILE “Default-mm .dwt”
BimConnectCutType “0”
BIMOSMODE 0
BINDTYPE 0
BKGCOLOR 7
BKGCOLORPS 7
BLIPMODE 0
BLOCKEDITLOCK 0
BLOCKEDITOR 0
BlocksPath “C:\Users\userid\Documents\”
bmAutoUpdate 1
bmForceUpdateMode 0
bmReportPanel 0
BMUPDATEMODE 0
BndLimit 1000
BoundaryColor 95
BVMODE 0

C Variables
CACHELAYOUT 1
CAMERADISPLAY 0
CAMERAHEIGHT 0
CANNOSCALE “1:1”
CANNOSCALEVALUE r/o 1
CDATE r/o 20160211 .15522
CECOLOR “ByLayer”
CELTSCALE 1
CELTYPE “ByLayer”
CELWEIGHT -1
CenterCrossGap “0 .05x”
CenterCrossSize “0 .1x”
CenterExe 0 .1200
CenterLayer “ .”
CenterLtscale 1 .0000
CenterLtype “Center2”
CENTERLTYPEFILE “Default .Lin”
CenterMarkExe 1
CETRANSPARECNY “ByLayer”
CGEOCS r/o “”
CHAMFERA 0
CHAMFERB 0
CHAMFERC 0
CHAMFERD 0
CHAMMODE 0
ChapooLog 0
ChapooLogVerbose 0
ChapooOnModified 1
ChapooServer “https://my .chapoo .com/”
ChapooTempFolder “C:\Users\userid\AppData\Local\Temp\Chapoo\”
ChapooUploadDependencies 1
ChapooWebsite “http://www .chapoo .com/”
CheckDwlPresence 0

496 Inside BricsCAD V19

System Variable Name Read-Only Default Value

CIRCLERAD 0
CLAYER “0”
CLEANSCREENOPTIONS 15
CLEANSCREENSTATE r/o 0
ClipBoardFormat 1
CLIPBOARDFORMATS 127
CliPromptLines 4
CLISTATE r/o 1
CloseChecksOnlyFirstBitDBMOD 0
CloudLog 0
CloudLogVerbose 0
CloudOnModified 1
CloudServer “https://my .bricsys247 .com/”
CloudTempFolder “C:\Users\login\AppData\Local\Temp\Bricsys_24_7\”
CloudUploadDependencies 1
CMATERIAL “ByLayer”
CMDACTIVE r/o 1
CMDDIA 1
CMDECHO 1
CmdLineEditBgColor “#fefefe”
CmdLineEditFgColor “#202020”
CmdLineFontName “Consolas”
CmdLineFontSize 10
CmdLineListBgColor “#ecf1ff”
CmdLineListFgColor “#000000”
CMDLNTEXT “:”
CMDNAMES r/o “SETTINGS”
CMLEADERSTYLE “Standard”
CMLJUST 0
CMLSCALE 1
CMLSTYLE “Standard”
CMPCLRMISS 1
CMPCLRMOD1 253
CMPCLRMOD2 2
CMPCLRNEW 3
CMPDIFFLIMIT 1000
COLORX 11
COLORY 112
COLORZ 150
COMAcadCompatibility 0
COMPASS 0
Componentspath “C:\Users\login\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\Support\Bim\Components\”
CONSTRAINTBARDISPLAY 3
ContinuousMotion 0
COORDS 1
COPYMODE 0
CPLOTSTYLE “ByColor”
CPROFILE r/o “Default”
CREATEVIEWPORTS 1
CROSSINGAREACOLOR 91
CTAB “Model”
CTABLESTYLE “Standard”
Ctrl3DMouse 1
CTRLMOUSE 1
CURSORSIZE 3
CVPORT 2

appendix A Concise Summary of System Variables and Settings 497

System Variable Name Ready-Only Default Value

D Variables
DATE r/o 2456335 .6613464
DBCSTATE r/o 0
DBLCLKEDIT 1
DBMOD r/o 0
DCTCUST “”
DCTMAIN “en_US .dic”
ddBetweenKnots 2
ddFastMode 0
ddGridAspectRatio 0
ddMaxFacetEdgeLength 0
ddMaxNumGridLines 10000
ddNormalTol 15
ddPointsPerEdge 0
ddSurfaceTol 0
ddUseFacetRES 1
DEFAULTLIGHTING 0
DefaultLightShadowBlur 8
DefaultNewSheetTemplate “”
DefaultRoomHeight “120”
DEFLPLSTYLE “Normal”
DEFPLSTYLE “ByColor”
DeleteTool 1
DELOBJ 1
DEMANDLOAD 3
DGNFRAME 2
DgnImp2dClosedBSplineCurveImportMode 0
DgnImp2dEllipseImportMode 0
DgnImp2dShapeImportMode 0
DgnImp3dClosedBSplineCurveImportMode 1
DgnImp3dEllipseImportMode 0
DgnImp3dObjectImportMode 0
DgnImp3dShapeImportMode 1
DgnImpBreakDimensionAssociation 0
DgnImpConvertDgnColorIndicesToTrueColors 0
DgnImpConvertEmptyDataFieldsToSpaces 1
DgnImpEraseUnusedResources 0
DgnImpExplodeTextNodes 0
DgnImpImportActiveModelToModelSpace 1
DgnImpImportInvisibleElements 1
DgnImpImportPaperSpaceModels 1
DgnImpImportViewIndex -1
DgnImpRecomputeDimensionsAfterImport 0
DgnImpSymbolResourceFiles “”
DgnImpXRefImportMode 2
DGNOSNAP 1
DIASTAT r/o 0
Displayaxes “0”
Displayaxesformep “0”
Displaysidesandends “1”
DisplaySnapMarkerInAllViews 0
DisplayTooltips 1
DISPPAPERBKG 1
DISPPAPERMARGINS 1
DISPSILH 0

498 Inside BricsCAD V19

System Variable Name Read-Only Default Value

DISTANCE r/o 0
DMAUTOUPDATE 1
DmExtrudeMode 0
DmPushPullSubtract 1
DMRECOGNIZE 0
DockPriority 1
DocTabPosition 0
DONUTID 0 .5
DONUTOD 1
DRAGMODE 2
DragModeHide 0
DRAGMODEINTERRUPT 1
DRAGOPEN 1
DRAGP1 10
DRAGP2 25
DRAGSNAP 0
DrawingPath “C:\Users\userid\Documents\”
DrawingViewPreset “none”
DrawingViewPresetHidden 0
DrawingViewPresetScale “”
DrawingViewpPesetTangent 0
DRAWORDERCTL 3
DWFFRAME 2
DWFOSNAP 1
DwfVersion 2
DWGCHECK 0
DWGCODEPAGE r/o “ANSI_1252”
DWGNAME r/o “Drawing1 .dwg”
DWGPREFIX r/o “C:\Program Files (x86)\Bricsys\BricsCAD V19x64\”
DWGTITLED r/o 0
DXEVAL 12
DxfTextAdjustAlignment 0
DYNCONSTRAINTMODE 1
DYNDIGRIP 31
DynDimColorHot 142
DynDimColorHover 142
DynDimDistance 1
DynDimLineType 1
DYNDIVIS 1
DynInputTransparency 65
DYNMODE 3

Dimensions Variables
DIMADEC 0
DIMALT 0
DIMALTD 2
DIMALTF 25 .4
DIMALTRND 0
DIMALTTD 2
DIMALTTZ 0
DIMALTU 2
DIMALTZ 0
DIMANNO r/o 0
DIMAPOST “”
DIMARCSYM 0

appendix A Concise Summary of System Variables and Settings 499

System Variable Name Ready-Only Default Value

DIMASO 1
DIMASSOC 2
DIMASZ 0 .18
DIMATFIT 3
DIMAUNIT 0
DIMAZIN 0
DIMBLK “”
DIMBLK1 “”
DIMBLK2 “”
DIMCEN 0 .09
DIMCLRD 0
DIMCLRE 0
DIMCLRT 0
DIMDEC 4
DIMDLE 0
DIMDLI 0 .38
DIMDSEP “0”
DIMEXE 0 .18
DIMEXO 0 .0625
DIMFIT 3
DIMFRAC 0
DIMFXL 1
DIMFXLON 0
DIMGAP 0 .09
DIMJOGANG 0 .7853981634
DIMJUST 0
Dimlayer “ .”
DIMLDRBLK “”
DIMLFAC 1
DIMLIM 0
DIMLTEX1 “”
DIMLTEX2 “”
DIMLTYPE “”
DIMLUNIT 2
DIMLWD -2
DIMLWE -2
DIMPOST “”
DIMRND 0
DIMSAH 0
DIMSCALE 1
DIMSD1 0
DIMSD2 0
DIMSE1 0
DIMSE2 0
DIMSHO 1
DIMSOXD 0
DIMSTYLE r/o “Standard”
DIMTAD 0
DIMTDEC 4
DIMTFAC 1
DIMTFILL 0
DIMTFILLCLR “BYBLOCK”
DIMTIH 1
DIMTIX 0
DIMTM 0
DIMTMOVE 0

500 Inside BricsCAD V19

System Variable Name Read-Only Default Value

DIMTOFL 0
DIMTOH 1
DIMTOL 0
DIMTOLJ 1
DIMTP 0
DIMTSZ 0
DIMTVP 0
DIMTXSTY “Standard”
DIMTXT 0 .18
DIMTXTDIRECTION 0
DIMTZIN 0
DIMUNIT 2
DIMUPT 0
DIMZIN 0

E Variables
EDGEMODE 0
ELEVATION 0
ElevationAtBreaklineCrossings “0”
EnableAttraction 1
EnableHyperlinkMenu 1
EnableHyperlinkTooltip 0
ERRNO 0
EXPERT 0
ExpInsAlign 0
ExpInsAngle 0
ExpInsFixAngle 1
ExpInsFixScale 1
ExpInsScale 1
EXPLMODE 1
ExportHiddenParts “0”
EXPORTMODELSPACE 0
EXPORTPAGESETUP 0
EXPORTPAPERSPACE 0
ExportProductStructure “1”
ExportStepFormatVersion “1”
EXTMAX r/o -1 .0000E+20,-1 .0000E+20,-1 .0000E+20
EXTMIN r/o 1 .0000E+20,1 .0000E+20,1 .0000E+20
EXTNAMES 1

F Variables
FACETRATIO 0
FACETRES 0 .5
FEATURECOLORS 1
FIELDDISPLAY 1
FIELDEVAL 31
FILEDIA 1
FILLETRAD 0 .5
FILLMODE 1
FittingRadiusType “0”
FittingRadiusValue “1 .5”
FLATLAND Off
FONTALT “simplex .shx”
FONTMAP “default .fmp”

appendix A Concise Summary of System Variables and Settings 501

System Variable Name Ready-Only Default Value

FRAME 3
FRAMESELECTION 0
FRONTZ r/o 0
FULLOPEN r/o 1

G Variables
GDIOBJECTS r/o 3768
GearteethNumber “1”
GENERATEASSOCVIEWS 0
GEOLATLONGFORMAT 1
GEOMARKERVISIBILITY 1
GetStarted 1
GfAng 0 .0000
GfClr1 “5”
GfClr2 “7”
GfClrLum 1 .0000
GfClrState 0
GfName 1
GfShift 0
GLSWAPMODE 2
GradientColorBottom “#d2d2d2”
GradientColorMiddle “#fafafa”
GradientColorTop “#ffffff”
GradientMode “0”
GRIDAXISCOLOR 252
GRIDDISPLAY 3
GRIDMAJOR 5
GRIDMAJORCOLOR 253
GRIDMINORCOLOR 254
GRIDMODE 0
GRIDSTYLE 0
GRIDUNIT 1/2”,1/2”
GRIDXYZT 1
GRIPBLOCK 0
GRIPCOLOR 72
GRIPDYNCOLOR 140
GRIPHOT 240
GRIPHOVER 150
GRIPOBJLIMIT 100
GRIPS 1
GRIPSIZE 4
GRIPTIPS 1
GsDeviceType 0
GsDeviceType2D 0
GsDeviceType3D 1

H Variables
HALOGAP 0
HANDLES r/o 1
HANDSEED “64”
HIDEPRECISION 0
HIDETEXT 1
HIDEXREFSCALES 1

502 Inside BricsCAD V19

System Variable Name Read-Only Default Value

HIGHLIGHT 1
HIGHLIGHTCOLOR 142
HIGHLIGHTEFFECT 0
HomeGradientColorButtom 210,210,210
HomeGradientColorMiddle 250,250,250
HomeGradientColorTop White
HomeGradientMode “0”
HorizonBkg_Enable 1
HorizonBkg_GroundHorizon “#878787”
HorizonBkg_GroundOrigin “#5F5F5F”
HorizonBkg_SkyHigh “#239BFF”
HorizonBkg_SkyHorizon “#FFFFFF”
HorizonBkg_SkyLow “#FAFAFF”
HotkeyAssistant 1
HPANG 0
HPANNOTATIVE 0
HPASSOC 1
HpBackgroundColor “ .”
HpColor “ .”
HPBOUND 1
HPBOUNDRETAIN 0
HPDOUBLE 0
HPDRAWORDER 3
HPGAPTOL 0
HPLAYER “ .”
HPLINETYPE 0
HpIslandDetection 0
HPMAXAREAS 0
HPNAME “”
HPOBJWARNING 10000
HPORIGIN 0”,0”
HPSCALE 1
HPSEPARATE 0
HPSPACE 1
HPSTYLE replaced by HpIslandDetection
HPTRANSPARENCY “ .”
HYPERLINKBASE “”

I Variables
IfcExplodeExternalReferences “0”
IfcExportBaseQuantities “0”
IfcExportElementsOnOffAndFrozenLayer “1”
IfcExportMultiplyElementsAsAggregated “0”
IfcImportBimData “1”
IfcImportParametricComponents “0”
IfcImportSpaces “0”
ImageCacheFolder “C:\Users\userid\AppData\Local\Temp\ImageCache\”
ImageCacheMaxMemory 160
ImageDiskCache 1
IMAGEFRAME 1
IMAGEHLT 0
ImageNotify 0
ImportColors “1”
ImportCreoAlternateSearchPaths “”
ImportCuiFileExists 0

appendix A Concise Summary of System Variables and Settings 503

System Variable Name Ready-Only Default Value

ImportHiddenparts “0”
ImportIfcProjectStructureAsXrefs “0”
ImportIgesSimplify “1”
ImportIgesStitch “1”
ImportInventorAlternateSearchPaths “”
ImportNxAlternateSearchPaths “”
ImportPmi “1”
ImportProductStructure “2”
ImportRepair “0”
ImportSimplify “0”
ImportSolidedgeAlternateSearchPaths “”
ImportSolidworksAlternateSearchPaths “”
ImportSolidworksRotateYz “1”
ImportStepRotateYz “0”
ImportStitch “0”
IncludePlotStamp 1
INDEXCTL 0
INETLOCATION “http://www .bricsys .com”
INSBASE 0”,0”,0”
INSNAME “”
INSUNITS 1
INSUNITSDEFSOURCE 0
INSUNITSDEFTARGET 0
InsUnitsScaling 1
INTERFERECOLOR “BYLAYER”
InterfereLayer “Interference”
INTERFEREOBJVS “”
INTERFEREVPVS “”
InteriorElevationMinLength “20”
InteriorElevationOffset “2”
INTERSECTIONCOLOR 257
INTERSECTIONDISPLAY 0
ISAVEBAK 1
ISAVEPERCENT 50
ISOLINES 4

L Variables
LASTANGLE 0
LASTPO 0”,0”,0”
LASTPROMPT r/o “: SETTINGS”
LATITUDE 37 .795
LayerFilterExcess 250
LAYERPMODE 1
LAYLOCKFADECTL 50
LAYOUTREGENCTL 2
LengthSamplingInterval “40”
LENGTHUNITS “”
LENSLENGTH 50
LicExpDays 31
LICFLAGS 7
LICKEY r/o “7897-9999-0000-99999-0000”
LightGlyphColor 30
LIGHTGLYPHDISPLAY 1
LIGHTINGUNITS 0
LightWebGlyphColor 1

504 Inside BricsCAD V19

System Variable Name Read-Only Default Value

LIMCHECK 0
LIMMAX 1’,9”
LIMMIN 0”,0”
LINEARBRIGHTNESS 0
LINEARCONTRAST 0
LISPINIT 1
LOCALE “en_US”
LocalRootFolder “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V19x64\en_US\”
LOCALROOTPREFIX r/o “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V19x64\en_US\”
LOCKUI 0
LOFTANG1 1 .5707963268
LOFTANG2 1 .5707963268
LOFTMAG1 0
LOFTMAG2 0
LOFTNORMALS 1
LOFTPARAM 7
LOGFILEMODE 0
LOGFILENAME r/o “”
LOGFILEPATH r/o “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V19x64\en_US\”
LOGINNAME r/o “userid”
LONGITUDE -122 .394
LookFromDirectionMode 1
LookFromFeedback 1
LookFromZoomExtents 1
LTSCALE 1
LUNITS 4
LUPREC 4
LWDEFAULT 25
LWDISPLAY 0
LWDISPSCALE 0 .55
LWUNITS 1

M Variables
MACROREC 0
MACROTRACE 0
MANIPULATOR 0
MANIPULATORDURATION 250
ManipulatorSize 1
MassPropAccuracy 0 .01
MASSUNITS “oz lbs stone mg g kg tonne”
MAXACTVP 64
MAXHATCH 100000
MAXSORT 200
MAXTHREADS 0
MBSTATE r/o 0
MBUTTONPAN 1
MEASUREINIT 0
MEASUREMENT 0
MENUBAR 1
MENUCTL 1
MENUECHO 0
MENUNAME r/o “C:\Users\userid\AppData\Roaming\Bricsys\Bricscad\V19x64\en_US\Support\default .cui”
MESHTYPE 1
MiddleClickClose 1
MILLISECS r/o 436750804

appendix A Concise Summary of System Variables and Settings 505

System Variable Name Ready-Only Default Value

MIRRTEXT 1
MLEADERSCALE 1
MODEMACRO “”
MSLTSCALE 1
MSOLESCALE 1
MTEXTCOLUMN 0
MTEXTDETECTSPACE 1
MTEXTED “”
MTEXTFIXED 2
MTFLAGS 0
MultiSelectAngularTolerance “3”
MyDocumentsFolder “C:\Users\login\Documents\”
MYDOCUMENTSPREFIX r/o “C:\Users\login\Documents\”

N Variables
NAVVCUBEDISPLAY 3
NAVVCUBELOCATION 0
NAVVCUBEOPACITY 50
NAVVCUBEORIENT 1
NavVCubeSize 4
NFILELIST 10
NOMUTT 0
NORTHDIRECTION 0

O Variables
OBJECTISOLATIONMODE 0
OBSCUREDCOLOR 257
OBSCUREDLTYPE 0
OFFSETDIST -1
OFFSETERASE 0
OFFSETGAPTYPE 0
OLEFRAME 2
OLEHIDE 0
OLEQUALITY 0
OLESTARTUP 0
OPMSTATE r/o 1
OrbitAutoTarget 1
ORTHOMODE 0
OSMODE 4133
OSNAPCOORD 2
OSNAPZ 0
OSOPTIONS 1

P Variables
PanBuffer 1
PanelButtonSize r/o 1
PAPERUPDATE 0
PARAMETERCOPYMODE 1
PdfCache 2
PdfEmbeddedTtf 1
PdfExportSolidHatchType 2
PDFFRAME 1
PdfHatchToBmpDpi 300
PdfImageAntiAlias 1

506 Inside BricsCAD V19

System Variable Name Read-Only Default Value

PdfImageCompression 1
PdfImageDPI 300
PdfImportApplyLineweight 1
PdfImportAsBlock 0
PdfImportConvertSolidsToHatches 0
PdfImportJoinLineAndArcSegments 1
PdfImportLayersUseType 0
PdfImportRasterImages 0
PdfImportSolidFills 1
PdfImportTrueTypeText 1
PdfImportTrueTypeTextAsGeometry 0
PdfImportVectorGeometry 1
PdfLayersSetting 1
PdfLayoutsToExport 0
PdfMergeControl 0
PdfNotify 0
PDFOSNAP 1
PdfPaperHeight 297
PdfPaperSizeOverride 0
PdfPaperWidth 210
PdfPRCCompression 0
PdfPRCExport 0
PdfPRCSingleViewMode 1
PdfRenderDPI 300
PdfShxTextAsGeometry 0
PdfSimpleGeomOptimization 1
PdfTextIsSearchable 0
PdfTtfTextAsGeometry 0
PdfUsePlotStyles 1
PdfZoomToExtentsMode 1
PDMODE 0
PDSIZE 0
PEDITACCEPT 0
PELLIPSE 0
PERIMETER 0
PERSPECTIVE 0
PFACEVMAX 4
PICKADD 1
PICKAUTO 3
PICKBOX 4
PICKDRAG 0
PICKFIRST 1
PICKSTYLE 1
PictureExportScale 1
_PKSER r/o “”
PlacesBarFolder1 0
PlacesBarFolder2 1
PlacesBarFolder3 3
PlacesBarFolder4 5
PLATFORM r/o “Microsoft Windows NT Version 6 .2”
PLINECACHE 0
PLINECONVERTMODE 0
PLINEGEN 0
PLINETYPE 2
PLINEWID 0
PlotCfgPath “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\PlotConfig\”

appendix A Concise Summary of System Variables and Settings 507

System Variable Name Ready-Only Default Value

PLOTID “”
PlotOutputPath “”
PLOTROTMODE 2
PlotStylePath “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\PlotStyles\”
PLOTTER 0
PLOTTRANSPARENCYOVERRIDE 1
PLQUIET 0
POLARADDANG “”
POLARANG 90
POLARDIST 0
POLARMODE 0
POLYSIDES 4
POPUPS r/o 1
PreviewDelay 30
PREVIEWEFFECT 2
PREVIEWFILTER 5
PreviewTopdown 0
PREVIEWTYPE 0
PreviewWndInOpenDlg 1
PrintFile “ .”
PRODUCT r/o “Bricscad”
PROGBAR 1
PROGRAM r/o “BRICSCAD”
PROJECTIONTYPE 0
PROJECTNAME “”
ProjectSearchPaths “”
PROJMODE 1
PROMPTMENU 3
PromptMenuFlags 1
PromptOptionFormat 2
PromptOptionTranslateKeywords 1
PropertyPreview 1
PropertyPreviewDelay 500
PropertyPreviewObjLimit 500
PropPrevTimeout 1
PROPUNITS 103
PropUnitsVersion 1
PROXYGRAPHICS 1
PROXYNOTICE 1
PROXYSHOW 1
PROXYWEBSEARCH 1
PSLTSCALE 1
PSOLHEIGHT 4
PSOLWIDTH 0 .25
PSTYLEMODE r/o 1
PSTYLEPOLICY 1
PSVPSCALE 0
PUBLISHALLSHEETS 1
PUCSBASE “”

Q Variables
QAFLAGS 0
QTEXTMODE 0
QuadAperture 20

508 Inside BricsCAD V19

System Variable Name Read-Only Default Value

QuadCommandLaunch 1
QuadCommandSort 0
QuadDisplay 0
QuadExpandDelay 110
QuadExpandTabDelay 50
QuadExpandGroup 0
QuadGoTransparent 0
QuadHideDelay 1000
QuadHideMargin 40
QuadIconSize 32
QuadIconSpace 1
QuadMostRecentItems 2
QuadPopupCorner 1
QuadShowDelay 150
_QuadTabFlags 12
QuadToolipDelay 1200
QuadWarpPointer 4
QuadWidth 5

R Variables
R12SaveAccuracy 8
R12SaveDeviation 0
RASTERPREVIEW 1
RE_INIT r/o 0
RealTimeSpeedUp 5
REALWORLDSCALE 1
RecentPath “C:\Users\userid\Documents\”
RedHiliteFull_Edge_Alpha 100
RedHiliteFull_Edge_Color “#007AFF”
RedHiliteFull_Edge_ShowHidden 0
RedHiliteFull_Edge_Smoothing 1
RedHiliteFull_Edge_Thickness 2
RedHiliteFull_Face_Alpha 10
RedHiliteFull_Face_Color “#007AFF”
RedHilitePartial_SelectedEdgeGlow_Alpha 75
RedHilitePartial_SelectedEdgeGlow_Color “#FFFFFF”
RedHilitePartial_SelectedEdgeGlow_Smoothing 1
RedHilitePartial_SelectedEdgeGlow_Thickness 3
RedHilitePartial_SelectedEdge_Alpha 100
RedHilitePartial_SelectedEdge_Color “#007AFF”
RedHilitePartial_S electedEdge_ShowGlow 1
RedHilitePartial_SelectedEdge_Smoothing 1
RedHilitePartial_SelectedEdge_Thickness 2
RedHilitePartial_SelectedFace_Alpha 10
RedHilitePartial_SelectedFace_Color “#007AFF”
RedHilitePartial_UnselectedEdge_Alpha 20
RedHilitePartial_UnselectedEdge_Color “#007AFF”
RedHilitePartial_UnselectedEdge_ShowHidden 1
RedHilitePartial_UnselectedEdge_Smoothing 1
RedHilitePartial_UnselectedEdge_Thickness 1
RedHilite_HiddenEdge_Alpha 50
RedHilite_HiddenEdge_Color “#FFFFFF”
RedHilite_HiddenEdge_Smoothing 1
RedHilite_HiddenEdge_Thickness 1
RedSdkLineSmoothing 0

appendix A Concise Summary of System Variables and Settings 509

System Variable Name Ready-Only Default Value

ReduceLengthType “0”
ReduceLengthValue “0 .5”
RefeditLockNotInWorkset 0
REFEDITNAME r/o “”
REGENMODE 1
REMEMBERFOLDERS 1
RenderMaterialPath “C:\ProgramData\ . . .”
RenderMaterialStaticPath “C:\Program Files\ . . .”
RenderUsingHardware 1
ReportPanel 0
ReportPanelMode 0
RevCloudArcStyle 0
REVCLOUDCREATEMODE 1
REVCLOUDGRIPS 1
RevCloudMaxArcLength 0 .375
RevCloudMinArcLength 0 .375
RIBBONDOCKEDHEIGHT 120
RIBBONSTATE r/o 0
RoamableRootFolder r/o “c:\users . . .”
ROAMABLEROOTPREFIX r/o “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\”
ROLLOVEROPACITY 100
ROLLOVERTIPS 1
RolloverSelectionSet 1
RTDISPLAY 1
RTRotationSpeedFactor 1
RTWalkSpeedFactor replaced by the StepSize variable
RunAsLevel 2

S Variables
SaveChangeToLayout 1
SAVEFIDELITY 1
SAVEFILE r/o “”
SAVEFILEPATH “C:\Users\userid\AppData\Local\Temp\”
SaveFormat 1
SaveLayerSnapshot 1
SAVENAME r/o “”
SaveOnDocSwitch 0
SAVEROUNDTRIP 1
SAVETIME 60
SCREENBOXES r/o 26
SCREENMODE r/o 1
SCREENSIZE r/o 145’-8”,73’-3”
SCRLHIST 256
SDI 0
SectionScale “0 .02”
SectionSheetsetTemplateImperial “”
SectionSheetsetTemplateMetric “”
SELECTIONANNODISPLAY 1
SELECTIONAREA 1
SELECTIONAREAOPACITY 25
SelectionModes 0
SELECTIONPREVIEW 3
SELECTSIMILARMODE 130
SHADEDGE 3
SHADEDIF 70

510 Inside BricsCAD V19

System Variable Name Read-Only Default Value
SheetNumberLeadingZeroes 1
SheetSetAutoBackup 1
SheetSetTemplatePath “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V19x64\en_US\Templates\Sheet Sets\”
SHORTCUTMENU 18
SHORTCUTMENUDURATION 250
ShowDocTabs 1
ShowFullPathInTitle 0
SHOWLAYERUSAGE 0
ShowScrollButtons 1
ShowTabCloseButton 0
ShowTabCloseButtonActive 0
ShowTabCloseButtonAll 1
ShowTabControls 1
ShowWindowListButton 1
SHPNAME “”
SingletonMode 0
SKETCHINC 0 .1
SKPOLY 0
SkpStitch 1
SKYSTATUS 0
SmAttributesLayerColor “7”
SmAttributesLayertextheight “0 .01”
SmAttributesLayerTextHeightType “0”
SmBendAnnotationsLayerColor “5”
SmBendAnnotationsLayerTextHeight “0 .01”
SmBendAnnotationsLayerTextHeightType “0”
SmBendlinesDownlayerColor “1”
SmBendlinesDownlayerLinetype “Continuous”
SmBendlinesDownlayerLineweight “-3”
SmBendlinesUplayerColor “1”
SmBendlinesUplayerLinetype “Continuous”
SmBendlinesUplayerLineweight “-3”
SMCOLORBEND “#FFDC50”
SMCOLORBENDRELIEF “#64D296”
SMCOLORCORNERRELIEF “#64D296”
SMCOLORFLANGE “#90A4AE”
Smcolorflangereferenceside “#68a4ae”
Smcolorform “#8791e1”
SMCOLORJUNCTION “#FF6E40”
SMCOLORLOFTEDBEND “#A0DCFA”
smcolormiter “#af46d8”
smcolorwrongbend “#ff3300”
smcontourslayercolor “7”
smcontourslayerlinetype “continuous”
smcontourslayerlineweight “30”
smconvertpreferformfeatures “0”
smconvertrecognizeholes “0”
smconvertrecognizeribcontrolcurves “0”
smdefaultbendlineextenttype “0”
smdefaultbendlineextentvalue “0 .25”
smdefaultbendradiustype “2”
smdefaultbendradiusvalue “1”
smdefaultbendreliefwidthtype “0”
smdefaultbendreliefwidthvalue “0 .5”
smdefaultcornerreliefdiametervalue “-1”
smdefaultflangesplitextensiontype “0”

appendix A Concise Summary of System Variables and Settings 511

System Variable Name Ready-Only Default Value

smdefaultflangesplitextensionvalue “0.1”
smdefaultflangesplitgaptype “0”
smdefaultflangesplitgapvalue “0.1”
smdefaultformfeatureunfoldmode “4”
smdefaultjunctionalignmenttorelief “0”
smdefaultjunctiongaptype “0”
smdefaultjunctiongapvalue “0 .001”
smdefaultkfactor “0 .27324”
smdefaultreliefextensiontype “0”
smdefaultreliefextensionvalue “0 .1”
smdefaultribfilletradiustype “0”
smdefaultribfilletradiusvalue “5”
smdefaultribprofileradiustype “0”
smdefaultribprofileradiusvalue “2”
smdefaultribroundradiustype “0”
smdefaultribroundradiusvalue “1”
smdefaultsharpbendradiuslimitratio “5”
smdefaultthickness “0 .078740157480315”
smexportosmapproximationaccuracy “0 .000393701”
smexportosmminimaledgelength “0 .001968505”
smformfeaturesdowncolor “6”
smformfeaturesdownlayerlinetype “continuous”
smformfeaturesdownlayerlineweight “-3”
smformfeaturesupcolor “6”
smformfeaturesuplayerlinetype “continuous”
smformfeaturesuplayerlineweight “-3”
smjunctioncreatehealcoincident “0”
smoverallannotationslayercolor “3”
smoverallannotationslayerlinetype “continuous”
smoverallannotationslayerlineweight “-3”
smparametrizeholesparametrization “3”
smrepairloftedbendmerge “0”
smsmartfeatures “3”
smsplitconvertbendtojunction “1”
smsplithealcoincident “0”
smsplitorthogonalbendsplit “0”
SMTARGETCAM “”
SNAPANG 0
SNAPBASE 0”,0”
SNAPISOPAIR 0
SnapMarkerColor 20
SnapMarkerSize 6
SnapMarkerThickness 2
SNAPMODE 0
SNAPSTYL 0
SNAPTYPE 0
SNAPUNIT 1/2”,1/2”
SOLIDCHECK 1
SORTENTS 127
spaAdjustMode 0
spaGridAspectRatio 0
spaGridMode 1
spaMaxFacetEdgeLength 0
spaMaxNumGridLines 512
spaMinUGridLines 0
spaMinVGridLines 0

512 Inside BricsCAD V19

System Variable Name Read-Only Default Value

spaNormalTol 15
spaSurfaceTol -1
spaTriangMode 1
spaUseFacetRES 1
SPLFRAME 0
SPLINESEGS 8
SPLINETYPE 6
SRCHPATH “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\Support\;
 C:\Program Files (x86)\Bricsys\BricsCAD V19x64\Support\;
 C:\Program Files (x86)\Bricsys\BricsCAD V19x64\Fonts\;
 C:\Program Files (x86)\Bricsys\BricsCAD V19x64\Help\en_US\”
SSFOUND “”
SSLOCATE 1
SSMAUTOOPEN 1
SSMPOLLTIME 15
SSMSHEETSTATUS 2
SSMSTATE 0
StackPanelType r/o 0
StampFontSize 0 .2
StampFontStyle “Arial”
StampFooter “”
StampHeader “”
StampUnits 0
STARTUP 1
STEPSIZE 6
StlPositiveQuadrant 1
STEPSPERSEC 2
StructureTreeConfig “mechanical.cst”
SURFTAB1 6
SURFTAB2 6
SURFTYPE 6
SURFU 6
SURFV 6
SvgBlendedGradients 0
SvgDefaultImageExtension “ .png”
SvgGenericFontFamily 0
SvgHiddenLineRemoving 0
SvgImageBase “”
SvgImageUrl “”
SvgLineWeightScale 1
SvgOutputHeight 768
SvgOutputWidth 1024
SvgPrecision 6
SYSCODEPAGE r/o “ANSI_1252”

T Variables
TabControlHeight 25
TABMODE 0
TabsFixedWidth 0
TangentLengthType “0”
TangentLengthValue “0”
TARGET 0”,0”,0”
TDCREATE r/o 2456335 .5399919
TDINDWG r/o 0 .121354456
TDUCREATE r/o 2456335 .8733252

appendix A Concise Summary of System Variables and Settings 513

System Variable Name Ready-Only Default Value

TDUPDATE r/o 2456335 .5399919
TDUSRTIMER r/o 0 .121354456
TDUUPDATE r/o 2456335 .8733252
TemplatePath “C:\Users\userid\AppData\Local\Bricsys\BricsCAD\V19x64\en_US\Templates\”
TEMPPREFIX “”
TestFlags 0
TEXTANGLE 0
TEXTED 2
TEXTEDITMODE 0
TEXTEVAL 0
TEXTFILL 1
TEXTQLTY 50
TEXTSIZE 0 .2
TEXTSTYLE “Standard”
TextureMapPath “C:\Program Files (x86)\Bricsys\BricsCAD V19x64\Textures\1\”
THICKNESS 0
ThreadDisplay “0”
THUMBSIZE 1
TILEMODE 1
TILEMODELIGHTSYNCH 1
TIMEZONE -8000
ToolbarMargin r/o 0
ToolbuttonSize r/o 0
TooliconPadding r/o 0
Tips 1
ToolbarIconSize 16
TOOLPALETTEPATH “C:\Users\userid\AppData\Roaming\Bricsys\BricsCAD\V19x64\en_US\Support\ToolPalettes\”
TOOLTIPS 1
TPSTATE r/o 0
TRACEWID 0 .05
TRACKPATH 0
TRANSPARENCYDISPLAY 1
TREEDEPTH 3020
TREEMAX 10000000
TRIMMODE 1
TSPACEFAC 1
TSPACETYPE 1
TSTACKALIGN 1
TSTACKSIZE 70
TTFASTEXT 3

U Variables
UCSAXISANG 90
UCSBASE “”
UCSDETECT 0
UCSFOLLOW 0
UCSICON 3
UCSICONPOS 0
UCSNAME r/o “”
UCSORG r/o 0”,0”,0”
UCSORTHO 1
UCSVIEW 1
UCSVP 1
UCSXDIR r/o 1”,0”,0”
UCSYDIR r/o 0”,1”,0”

514 Inside BricsCAD V19

System Variable Name Read-Only Default Value

UNDOCTL r/o 5
UNDOMARKS r/o 0
UNITMODE 0
UseBIM 2
UseCommunicator 1
UseMechanical 1
USERI1 thru USERI5 0
USERR1 thru USERR5 0
USERS1 thru USERS5 “”
UseSheetMetal 2
UseStandardOpenFileDialog 0

V Variables
VbaMacros 1
VENDORNAME r/o “Bricsys”
VerboseBimSectionUpdate “1”
_VERNUM r/o “19 .1 .06 (UNICODE)”
VersionCustomizableFiles r/o “344”
VIEWCTR r/o 10 7/16”,4 1/2”,0”
VIEWDIR r/o 0”,0”,1”
VIEWMODE r/o 0
VIEWSIZE r/o 297
VIEWTWIST r/o 0
VIEWUPDATEAUTO 1
VISRETAIN 1
VOLUMEPREC -1
VOLUMEUNITS “in ft mi µm mm cm m km”
VPROTATEASSOC 1
VSMAX r/o -1 .0000E+20,-1 .0000E+20,-1 .0000E+20
VSMIN r/o 1 .0000E+20,1 .0000E+20,1 .0000E+20
VTDURATION 750
VTENABLE 3
VTFPS 7

W Variables
WarningMessages 65535
WHIPARC 1
WHIPTHREAD 0
WINDOWAREACOLOR 150
WIPEOUTFRAME 1
WMFBKGND 0
WMFFOREGND 0
WNDLMAIN 2
WNDLSCRL 0
WNDLSTAT 1
WNDLTABS 1
WNDLTEXT 1
WNDPMAIN pt2d 0”,0”
WNDPTEXT pt2d 3’-4”,3’-4”
WNDSMAIN pt2d 101’-2”,66’-11”
WNDSTEXT pt2d 118’-4”,86’
WorkspaceSecurity 1
WORLDUCS 1
WORLDVIEW 1

appendix A Concise Summary of System Variables and Settings 515

System Variable Name Ready-Only Default Value

WRITESTAT r/o 1
WSAUTOSAVE 1
WSCURRENT “2D Drafting”

X Variables
XCLIPFRAME 2
XDwgFadeCtl 70
XEDIT 1
XFADECTL 50
XLOADCTL 1
XLOADPATH “C:\Users\userid\Documents\”
XNotifyTime 5
XREFCTL 0
XRefNotify 1
XREFOVERRIDE 0

Z Variables
ZOOMFACTOR 60
ZOOMWHEEL 0

Variables
3DCOMPAREMODE 3
3DOSMODE 11
3dSnapMarkerColor 5

516 Customizing BricsCAD V19

Notes

APPENDIX C

Concise DCL Reference

DCL allows you to create the these elements in dialog boxes: buttons, popup lists, text edit
boxes, radio buttons, image buttons, sliders, list boxes, and toggles.

These elements are called tiles, and can be clustered together as dialog boxes, boxed columns, boxed
radio columns, radio columns, boxed radio rows, radio rows, boxed rows, rows, and columns. To
make dialog boxes prettier and show graphical information, you can add these elements: images,
spacer 0, text, spacer 1, and spacer.

The base.dcl file defines numerous basic tiles, such as the OK button, so that you don’t need to write
them from scratch.

Each tile works with one or more attributes. Attributes specify the look of the tile and how it works.
For instance, the label tile specifies the text that appears on buttons. A special attribute, called "key,"
allows LISP code to communicate back to the dialog box and make changes, such as changing the
text displayed by the dialog box’s title bar.

This appendix describes every tile and its associated attributes, as well as the LISP functions that
are specific to dialog boxes.

In this reference, the default value of attributes is shown in boldface. For example,
 alignment = left | right | centered;

shows that "left" is the default value for the Alignment attribute.

The information in this reference applies equally to BricsCAD running on Linux, Mac, and Windows.
When there are differences, the Linux and Mac portions are highlighted in gray.

518 Customizing BricsCAD V19

QUICK REFERENCE OF DCL TILE NAMES

boxed_column Draws a rectangle around a vertical column of tiles.

boxed_radio_column Draws a rectangle around a vertical column of radio tiles.

boxed_radio_row Draws a rectangle around a horizontal row of radio tiles.

boxed_row Draws a rectangle around a horizontal row of tiles.

button Displays a button with text.

column Creates a column of tiles.

dialog Creates a dialog box.

default_dcl_settings Sets the level of debugging.

edit_box Displays a text edit box.

image Displays a static image.

image_button Displays a button with an image.

list_box Displays a list.

paragraph Concatenates text tiles into vertical paragraphs.

popup_list Displays a droplist.

radio_button Displays a round radio button.

radio_column Creates a column of radio buttons.

radio_row Creates a row of radio buttons.

row Creates a row of tiles.

slider Displays a vertical or horizontal slider bar.

spacer Inserts a rectangular space.

spacer_0 Inserts variable-width space.

spacer_1 Inserts narrow space.

text Displays static text.

text_part Contains a piece of text.

toggle Displays a square checkbox.

 C Concise DCL Reference 519

DIALOG

The dialog tile defines dialog boxes.
name : dialog {

 label = "text";

 value = "text";

 initial_focus = "key";

}

NAME

The name attribute identifies dialog boxes by name. This allows you to have define all dialog boxes
in a single DCL file. The LISP routine that accompanies the DCL file uses the load_dialog function
to load the filename.dcl file, and then uses new_dialog to locate the specific dialog box, as follows:
 (setq dlg-id (load_dialog "c:\\filename"))

 (new_dialog "name" dlg-id)

TIPS	 The	dlg-id	variable	holds	the	system-assigned	identifier	for	the	DCL	file.	This	is	typically	a	num-
ber,	such	as	30.		
	 If	the	number	has	a	negative	value,	such	as	-1,	then	the	DCL	file	failed	to	load	correctly.	You	can	
use	this	number	to	generate	error	reports.

LABEL

The label attribute displays text on the dialog box’s title bar, such as:
 label = "Dialog Box";

Label

The value attribute is nearly the same, because it also displays text on the title bar. The difference
is that you can use the LISP set_value function to later change the title.

TIP	 You	can	change	the	dialog	box’s	title	when	the	accompanying	LISP	routine	is	run.	This	is	useful,	
for	example,	with	a	file	dialog	box	whose	title	should	reflect	the	extension	of	the	file	extension	being	ac-
cessed.	To	change	the	text,	use	the	(set_tile	key value)	function,	which	changes	the	value	of	the	tile	speci-
fied	by	key.	
	 The	problem	is	that	BricsCAD	cannot	widen	the	dialog	box	to	accommodate	long	titles.	To	avoid	
cutting	off	some	of	the	value text,	specify	a	long	title	with	label.

INITIAL FOCUS

The initial_focus attribute indicates which button or other tile gets the focus. "Focus" refers to the
tile that is highlighted, the one that would be activated when you press the Enter key.

Default button

520 Customizing BricsCAD V19

QUICK REFERENCE OF DCL ATTRIBUTES

action LISP action expression.
alignment Horizontal or vertical position in a cluster.
allow_accept Activates the is_default attribute when tile is selected.
aspect_ratio Aspect ratio of an image.

audit_level Specifies the level of debugging.

big_increment Incremental distance to move.

children_alignment Alignment of a cluster’s children.
children_fixed_height Height of a cluster’s children doesn’t grow during layout.
children_fixed_width Width of a cluster’s children doesn’t grow during layout.

color Background (fill) color of an image.

edit_limit Maximum number of characters that can be entered.
edit_width Width of the input field of the tile.

fixed_height Prevents height from shrinking.
fixed_width Prevents width from shrinking.

fixed_width_font Displays text in a fixed pitch font.

height Height of the tile.

initial_focus Key of the tile with initial focus.
is_bold Displays as bold.
is_cancel Reacts to the cancel key (Esc).
is_default Reacts to the accept key (Enter).
is_enabled Tile is initially enabled.

is_tab_stop Tile is a tab stop.

key Tile name used by the application.

label Displayed label of the tile.
layout Whether the slider is horizontal or vertical.

list Initial values to display in list.

max_value Maximum value of a slider.
min_value Minimum value of a slider.
mnemonic Mnemonic character for the tile.
multiple_select List box allows multiple items to be selected.

password_char Masks characters entered in edit_box.

small_increment Incremental distance to move.

tab_truncate Truncates text longer larger than the associated tab stop.

tabs Tab stops for list display.

value Tile’s initial value.

width Width of the tile.

 C Concise DCL Reference 521

Usually, the focus is set to the OK button, or to the tile users are likely to assess the most.

KEY

The value of focus is the name of the key tied to the tile. For example, when the key of the OK but-
ton is "okButton," then you enter the following:
 initial_focus = "okButton";

Exiting Dialog Boxes
Every dialog box must have at least an OK button, so that users can exit the dialog box. You can
use predefined buttons to give your dialog boxes the same look as those of Bricsys-designed dialog
boxes. These are called "subassemblies," and are found in base.dcl.

For instance, to include the standardized button, use the ok_only subassembly like this:
 name : dialog {

 label = "Dialog Box";

 ok_only;

 }

Notice that subassemblies are not prefixed by the ‘ : ’ character. (If BricsCAD complains about the
ok_only subassembly, then you need to load the base.dcl file with the following bit of code:
 Command: (load_dialog "base.dcl")

Both OK and Cancel exit the dialog box, but they have different meanings:
Cancel button provided by Windows

Cancel button provided by Linux

•	 OK records	changes	made	by	users.

•	 Cancel discards	the	changes.

After the dialog box is exited, BricsCAD sets the read-only DiaStat system variable (short for "dialog
box status") to one of the following values:

DiaStat Meaning

0 User clicked Cancel to exit dialog box .
1 User clicked OK to exit dialog box .

At the right end of the dialog box’s title bar is an x button. It is equivalent to Cancel, and users can
use it in place of Cancel.

If the dialog box is tight on space, you can leave out the Cancel button, and let users use the x button
on the dialog box’s title bar; just remember to include the OK button.

522 Customizing BricsCAD V19

QUICK REFERENCE OF LISP FUNCTIONS
FOR DIALOG BOXES

(action_tile) Assigns action to be evaluated when user selects dialog box tile.

(add_list) Adds and modifies strings in current dialog box listbox.

(client_data_tile) Associates data from an application with a tile in the dialog box.

(dimX_tile) Returns the x-dimension of the dialog box image tile.
(dimY_tile) Returns the y-dimension of the dialog box image tile.
(done_dialog) Terminates the dialog box.

(end_image) Ends creation of dialog box image tile.

(end_list) Ends processing of dialog box list box.

(fill_image) Draws filled rectangles in dialog boxes.

(get_attr) Retrieves the DCL value of the tile’s attribute.

(get_tile) Retrieves the value of tile.

(load_dialog) Loads .dcl files that define dialog boxes.

(mode_tile) Sets the mode of dialog box tiles.

(new_dialog) Activates dialog boxes.

(set_tile) Sets the value of dialog box tiles.
(slide_image) Displays slides in dialog box image tiles.
(start_dialog) Displays the current dialog box.
(start_image) Starts creating images in dialog boxes.

(start_list) Starts processing lists in dialog boxes.

(term_dialog) Terminates dialog boxes.

(unload_dialog) Unloads .dcl files from memory.

(vector_image) Draws vectors in dialog box image tiles.

QUICK REFERENCE OF DIALOG BOXES DISPLAYED
BY LISP FUNCTIONS

(acad_colordlg) Displays the Select Color dialog box with only the Index Color tab.
(acad_helpdlg) [obsolete] Displays the Help dialog box.
(acad_truecolordlg) Displays the Select Color dialog box with all tabs.
(alert) Displays the alert dialog box with customized warning.
(help) Displays the Help window.
(initdia) Forces display of the next command’s dialog box.

 C Concise DCL Reference 523

BUTTON

The button tile defines buttons with text labels.
Label

Mnemonic

Width

Height

: button {

 label = "text";

 mnemonic = "char";

 action = "(LISP function)";

 key = "text";

 is_cancel = false | true;

 is_default = false | true;

 is_enabled= true | false;

 is_tab_stop= true | false;

 width = number;

 height = number;

 fixed_height = false | true;

 fixed_width = false | true;

 alignment = centered | left | right;

}

LABEL

The label attribute places text on the button tile, such as:
 label = "More Info";

MNEMONIC

The mnemonic attribute underlines a character. Users can then access the button by pressing Alt
and the letter. For example, the following code underlines the letter “M” in More Info:
 mnemonic = "M";

TIPS	 As	an	alternative	to	the	mnemonic	attribute,	you	can	prefix	characters	with	&	in	the	label,	like	
this:	
	 	 label	=	"&More	Info";	
Make	sure	that	mnemonic	characters	are	not	used	more	than	once	in	each	dialog	box.	For	instance,	don’t	
use	M	twice	in	the	same	dialog	box.

ACTION

The action attribute contains LISP code that gets executed when users click the button. (This is
called a "callback.") For example, the code could set the value of system variables, like this:
 action = "(setvar "highlight" 0)"

524 Customizing BricsCAD V19

SUMMARY OF TILE REFERENCES

This appendix lists DCL’s tiles and attributes in order of importance, as follows:

Dialog

 Button

 Ok_Only

 Ok_Cancel

 Ok_Cancel_Help

 Ok_Cancel_Help_Errtile

 Ok_Cancel_Help_Info

 Radio_Button

 Toggle

 Image_Button

 Edit_Box

 List_Box

 Popup_list

 Slider

 Text

 Text_Part

 Concatenation

 Paragraph

 Errtile

 Spacer

 Spacer_0

 Spacer_1

 Image

 Column

 Row

 Boxed_Column

 Boxed_Row

 Radio_Column

 Radio_Row

 Boxed_Radio_Column

 Boxed_Radio_Row

 C Concise DCL Reference 525

TIPS	 You	cannot,	unfortunately,	use	the	LISP	command function	to	execute	BricsCAD	commands	
with	the	action attribute.	
	
You	can	use	the	LISP action_tile	function	to	override	the	action	specified	by	the	action attribute.	

KEY

The key attribute gives an identifying tag to the button.

IS_CANCEL

The is_cancel=true attribute specifies that this button is selected when users press the Esc key.
 is_cancel = true;

Usually, the dialog box is exited right away when users press Esc. In addition, BricsCAD sets the
value of the DiaStat system variable to 0. However, if the button has an action attribute, then the
associated LISP expression is executed before the dialog box is exited.

TIPS	 Only	one	button	in	the	dialog	box	can	be	assigned	is_cancel=true.	
	
	 There	is	no	point	in	having	is_cancel=false,	except	for	debugging	perhaps.

IS_DEFAULT

The is_default=true attribute specifies that this button is selected when users press the Enter
key — unless another button has the focus.
 is_default true;

IS_ENABLE

The is_enable=false attribute allows you to gray-out buttons. This tells users that the buttons are
unavailable, usually because some other condition is not satisfied, such as the drawing is in paper
space instead of model space.
 is_enabled= false;

Grayed-out text

When set to true, the buttons become available. To change the status from false to true, use the
mode_tile function in LISP.

IS_TAB_STOP

The is_tab_stop attribute allows the button to receive focus when users press the Tab key. Pressing
Tab is a popular way for power users to quickly move through the controls of dialog boxes; if the
mouse is busted, then that’s the only way to navigate a dialog box.
 is_tab_stop= false;

Normally, there is no reason not to allow a button to be a tab stop, and since the default is true,
there’s not much need for this attribute.

526 Customizing BricsCAD V19

WIDTH & HEIGHT

The width and height attributes specify the minimum size of buttons. You can use integers (such
as 5) or real numbers (such as 5.5).

Usually BricsCAD determines the correct size on its own, so you don’t need to specify these attributes.
But if you need to create extra large buttons, such as the one illustrated below, then go right ahead!
 width = 60;
 height = 5;

The units are in characters, such as 60 characters wide and 5 lines tall. BricsCAD determines the
size of character based on an average calculated of all letters in the 8-pt "MS San Serif" font used
by Windows for text in dialog boxes. The font cannot be changed.

In the table below, the black areas indicate size of tiles based on a variety of values for the Width
and Height attributes:

Size Example

Height = 1

Height = 2

Height = 3

Width = 30

Width = 40

Width = 80

FIXED_HEIGHT & FIXED_WIDTH

The fixed_height and fixed_width attributes prevent BricsCAD from expanding buttons to fill the
available space. Recall that the height and width attributes specify only the minimum size, and so
adding these two attributes also specifies the maximum size.
 fixed_height = true;
 fixed_width = true;

TIP	 Use	the	image_button	tile	for	buttons	with	colors	and	images.

 C Concise DCL Reference 527

ALIGNMENT

The alignment attribute is supposed to shift text left or right on the button. In practice, however,
I find this attribute has no effect; the text is always centered.
 alignment = left | right | centered;

Bricsys notes that alignment cannot be specified along the long axis of a cluster of tiles. The first and
last tiles align with either end of the row (or column), while the inner tiles are distributed evenly
between them. You can change the distribution with the spacer_0 tile.

PREFABRICATED BUTTON ASSEMBLIES

Bricsys provides the following pre-fabricated button assemblies in base.dcl. This file is described
in detail later in this chapter.

OK_ONLY

The ok_only tile defines the OK button.
ok_only;

OK_CANCEL

The ok_cancel tile defines a horizontal row of the OK and Cancel buttons.
ok_cancel;

OK_CANCEL_HELP

The ok_cancel tile defines a horizontal row of OK, Cancel, and Help buttons.
ok_cancel_help;

OK_CANCEL_HELP_ERRTILE

The ok_cancel_help_errotile tile defines a horizontal row of OK, Cancel, and Help buttons, and
space below for an error message.
ok_cancel_help_errtile;

Space for error message

528 Customizing BricsCAD V19

OK_CANCEL_HELP_INFO

The ok_cancel_help_info tile defines a horizontal row of OK, Cancel, Help, and Info buttons. The
Info button can be used to display a second dialog box with additional information.
ok_cancel_help_info;

RADIO_BUTTON

The radio_button tile defines radio buttons. These buttons are used when only one choice can
be made from a selection, such as the top, left, or right isoplane. When selected, the radio button
shows a black dot; when off, the round button is blank.

If the dialog box has more than one radio button in a cluster, only one can be on at a time. When us-
ers select a radio button, the other one turns off automatically. To have more than one radio button
on at a time, segregate them into clusters with the radio_row or radio_column tiles.

Value = 1

Value = 0

Label

Mnemonic

: radio_button {
 action = "(LISP function)";
 key = "text";

 label = "text";
 mnemonic = "char";
 value = "0" | "1";

 is_enabled= true | false;
 is_tab_stop= true | false;

 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;

 alignment = left | right | centered;
}

LABEL

The label attribute describes the purpose of the radio button to users. The text is always to the
right of the button.

VALUE

The value attribute determines whether the radio button is initially on or off:
 value = "1";

Value Meaning Example

0 Off
1 On

When you leave out the value attribute, then BricsCAD turns on the first radio button. The other
radio button attributes have the same meanings as for the button tile.

 C Concise DCL Reference 529

Multiple Radio Buttons
When more than one radio button has value set to 1, then BricsCAD turns on only the last one. as
illustrated below.

If you need more than one radio button to be turned on, then use check boxes instead. Use the
toggle tile to make check boxes.

I mean, if you really want a dialog box to show two or more radio buttons turned on, then the
workaround is to segregate radio buttons with the radio_column tile, as illustrated below.

Here’s the DCL code:
 : radio_column {
 : radio_button { label = "Radio Button 1"; value = "1"; }
 : radio_button { label = "Radio Button 2"; value = "1"; }
 }
 : radio_column {
 : radio_button { label = "Radio Button 3"; value = "1"; }
 : radio_button { label = "Radio Button 4"; value = "1"; }
 }

It’s not clear that the four buttons are segregated into two sections, so it makes sense to replace
radio_column with the boxed_radio_column tile to separate them visually.

530 Customizing BricsCAD V19

By default, BricsCAD stacks radio buttons vertically, as shown above. You can use the radio_row
tile to force the radio buttons in a horizontal line — although this format is more difficult for users
to navigate visually.

More on the boxed_ and radio_ tiles later in this appendix.

TOGGLE

The toggle tile defines check boxes. Check boxes are employed so users can select more than one
choice at a time. (Use radio buttons to limit options to a single choice.)

Value = 1

Value = 0

Label

Mnemonic

: toggle {
 action = "(LISP function)";
 key = "text";

 label = "text";
 mnemonic = "char";
 value = "0" | "1";

 is_enabled= true | false;
 is_tab_stop= true | false;

 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;

 alignment = left | right | centered;
}

LABEL

The label attribute describes to users the purpose of the check box. The text is always to the right
of the button.

VALUE

The value attribute determines whether the toggle is initially on or off:
 value = "1";

Value Meaning Example

0 Off
1 On

When check boxes lack the value attribute, then they are all turned off by default.

 C Concise DCL Reference 531

OTHER ATTRIBUTES

The other attributes have the same meaning as for the radio tile.

You can use the boxed_row and boxed_column tiles to segregate toggles into groups.

IMAGE_BUTTON

The image_button tile defines a button tile with an image. This can be the difficult to program,
because some situations require you to correlate x,y coordinates from users’ picks with LISP code.

Width

Height

Key

Dialog_background

Dialog_line

: image_button {
 action = "(LISP function)";
 key = "text";

 aspect_ratio = number;
 mnemonic = "char";
 color = colornumber;

 allow_accept = false | true;
 is_enabled= true | false;
 is_tab_stop= true | false;

 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;

 alignment = left | right | centered;
}

KEY

The key attribute identifies the image tile to the accompanying LISP code, so that the slide image
can be placed in the dialog box.
 key = "image1";

Images of hatch patterns, fonts, and so on are placed on the image tile through the accompanying
LISP code’s callback function (set_tile) and the key attribute. There are two sources of image you
can use:

•	 SLD	slide	files,	which	are	created	ahead	of	time	with	BricsCAD’s	MSlide command,	and	then	placed	with	

LISP’s	slide_image	function.

•	 Vector	lines,	which	are	drawn	on-the-fly	by	LISP’s	vector_image	function.

ASPECT_RATIO, HEIGHT, & WIDTH

You use any two of these three attributes. The aspect_ratio attribute specifies the ratio between
the height and width of the image tile, and must be used with either the height or the width at-
tribute — but not both. Similarly, if you use the height and width attributes, you cannot use the
aspect_ratio attribute.

532 Customizing BricsCAD V19

Examples:
 aspect_ratio = 1.333;

 height = 3;

Or...
 aspect_ratio = 1.333;

 width = 4;

Or...
 height = 3;

 width = 4;

COLOR

The color attributes specifies the background color of image tiles. You can use a color name or
number; default = 7 (white or black).

Color Name Meaning

0 black ACI color 0 (black or white) 1
1 red ACI 2 color 1
2 yellow ACI color 2
3 green ACI color 3
4 cyan ACI color 4
5 blue ACI color 5
6 magenta ACI color 6
7 white ACI color 7 (white or black) 1

-1 graphics_foreground Current default color of entities (usually ACI 7) . 1

-2 graphics_background Current background color of BricsCAD’s graphics screen .
-3 blue
-4 black
-5 gray
-6 black
-7 red
-15 dialog_background Current color of dialog box background (usually gray) .
-16 dialog_foreground Current color of dialog box text (usually black) .
-18 dialog_line Current color of dialog box lines (usually black) .

Notes:
1 The color is white when the background color is dark, but black when the background is light .
2 ACI is short for "BricsCAD Color Index," and refers to the 256 color numbers .

Autodesk notes that "if your image tile is blank when you first display it, try changing its color to
graphics_background or graphics_foreground."

EDIT_BOX

The edit_box tile defines a horizontal tile for entering text.

Edit_width

Label

Value

 C Concise DCL Reference 533

: edit_box {
 label = "text";
 mnemonic = "char";

 action = "(LISP function)";
 key = "text";

 value = "text";
 fixed_width_font = false | true;
 password_char = "char";
 edit_limit = 1-256;
 edit_width = 1-256;

 allow_accept = false | true;
 is_enabled= true | false;
 is_tab_stop= true | false;

 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;

 alignment = left | right | centered;
}

LABEL

The label attribute displays text that prompts users as to the text or numbers to enter. The label
is always positioned to the left of the text entry box.
 label = "Edit Box";

MNEMONIC

The mnemonic attribute provides the Alt+shortcut keystroke for the label. Alternatively, prefix a
letter in the label with &.
 mnemonic = "E";

or
 label = "&Edit Box";

VALUE

The value attribute displays default text in the edit box, such as "Default text" in the figure above.
For a blank, leave it out, or use value = "".
 value = "Default text";

PASSWORD_CHAR

When the edit box is used for entering passwords, then you can specify a character with the pass-
word_char attribute that substitutes for user-entered text, such as "*".
 password_char = "*";

534 Customizing BricsCAD V19

FIXED_WIDTH_FONT

The fixed_width_font attribute determines whether the edit box uses a fixed width font; more pre-
cisely, the monospaced FixedSys font included with Windows. (This attribute is not documented.)
Only the user text is affected by this attribute; the dialog box text keeps its font.
 fixed_width_font = true;

EDIT_LIMIT

The edit_limit attribute limits the maximum number of characters users can type in. For text, the
limit usually doesn’t matter; the default is 132. You might want to expand the limit to its maximum
of 256, or reduce it. For example, you may want to limit entry to a single character or digit.
 edit_limit = 256;

EDIT_WIDTH

The edit_width attribute determines the size of the edit box; it can be an integer or a real number.
Users can enter more characters than this number, up to the maximum determined by edit_limit.
The default width is whatever fits in the dialog box; specifying edit_width = 0 has the same effect.
In many cases, the default width is about 16 characters.
 edit_width = 186;

I have found that the maximum value of 256 can overwhelm:

OTHER ATTRIBUTES

The remaining attributes have the same meaning as for other tiles.

LIST_BOX

The list_box tile defines tiles that list text items; users can select one or more of them.

List_box

Value

List
Label

 C Concise DCL Reference 535

: list_box {
 action = "(LISP function)";
 key = "text";

 label = "text";
 mnemonic= "char";

 list = "text 1\ntext 2\ntext 3";
 value = "0";
 multiple_select = false | true;;
 tabs = "number number number";
 tab_truncate = false | true;
 fixed_width_font = false | true;

 allow_accept = false | true;
 is_enabled= true | false;
 is_tab_stop= true | false;

 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;

 alignment = left | right | centered;
}

LIST

The list attribute specifies the text in the list box tile. Each item is separated by the \n metacharacter,
which means "new line." When the list becomes too long for the list box, BricsCAD automatically
adds a scroll bar, as illustrated later.
 list = "text 1\ntext 2\ntext 3";

TABS

You can use the tabs attribute to line up text in list boxes. The tabs are specified in characters, such
as at the 5th, 10th, 15th, and 20th character.

 tabs = "5 10 15 20";

To specify tabs in the text of the list attribute, use the \t metacharacter (short for "tab"). The fol-
lowing DCL code and figure illustrate the use of \n and \t:
 list = "tab 1\tline 1\ntan 2\tline 2\ntab 3\tline 3";

TAB_TRUNCATE

The tab_truncate attribute determines whether text is truncated when longer than the associated
tab stop. Default is false, which means text is not truncated.
 tab_truncate = true;

536 Customizing BricsCAD V19

FIXED_WIDTH_FONT

The fixed_width_font attribute lets the list use the Windows FixedSys font, a monospace font (a.k.a.
fixed width font), where each character takes up the same width. This can be useful when you need
columns of text to line up; otherwise, fixed width text is not useful, because it makes the dialog box
wider. (This attribute is undocumented.)
 fixed_width_font = true;

In the figure below , both dialog boxes have width = 30. The fixed width font takes up more space.

VALUE

The value attribute specifies which item is initially highlighted. The default, 0, means the first item
is highlighted. If you want more than one item highlighted, then separate the digits with spaces.

The following examples highlights items #2 and #3:
 value = "1 2";

Multiple_Select
The multiple_select attribute determines whether users can select more than one item from the
list. Users need to hold down the Ctrl key to select more than one item, or the Shift key to select a
sequential range of items.

Left: Selecting random items with the Ctrl key held down.

Right: Selecting sequential items with the Shift key held down.

 multiple_select = false;

When this attribute is set to false (the default setting), then the value attribute is restricted to the
first digit. For example, value = "1 2" becomes "1".

 C Concise DCL Reference 537

HEIGHT

The height attribute determines the height of the list box in lines. For example, height = 7 means
that the list box is seven lines tall, but has room for only six items, because the seventh line is used
for the label.

When height is set to 0 or is not included, then the list box is stretched to accommodate all items
in the list, if possible.

WIDTH

The width attribute determines the width of the list box. Width is measured in characters.

OTHER ATTRIBUTES

The remaining attributes operate identically to those in other tiles.

POPUP_LIST

The popup_list tile displays a droplist. Despite the name, this tile drops down, not up.

Left: Popup list before...

Right: ...and after being selected by the user.

: popup_list {
 action = "(LISP function)";
 key = "text";

 label = "text";
 mnemonic = "char";

 list = "text 1\ntext 2\ntext 3";
 tabs = "number number number";
 tab_truncate = false | true;
 value = "text";
 fixed_width_font = false | true;
 edit_width = 1-256;

 is_enabled= true | false;
 is_tab_stop= true | false;

 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;

 alignment = left | right | centered;
}

538 Customizing BricsCAD V19

LABEL

The label attribute provides the prompt text for the droplist.
 label = "Popup list: ";

MNEMONIC

As with other tiles, you can specify the Alt+shortcut with the & prefix, or else use the mnemonic
attribute to indicate the shortcut keystroke.
 label = "&Popup list: ";

 mnemonic = "P";

LIST

The list attribute specifies the text in the droplist tile. Each item is separated by the \n metacha-
racter. When the list becomes too long for the droplist, BricsCAD automatically adds a scroll bar.
 list = "text 1\ntext 2\ntext 3";

TABS

If you need text to line up in columns, use the tabs attribute to specify the tab spacing.
 tabs = "10 20 30";

Then use the \t metacharacter to specify where the tabs occur in the list attribute.
 list = "text 1\ttext 2\ttext 3";

TAB_TRUNCATE

The tab_truncate attribute determines whether text is truncated when longer than the associated
tab stop. Default is false, which means it is not truncated.
 tab_truncate = true;

VALUE

The value attribute specifies which item is initially selected. The first item is #0 (the default). Use
value = "" for no initial selection.
 value = "1";

#0

#1

#2

OTHER ATTRIBUTES

The other attributes are identical to those described for other tiles.

 C Concise DCL Reference 539

SLIDER

The slider tile defines vertical and horizontal sliders.

Small_increment
Min_value

Label

Max_value
Big_increment

: slider {
 action = "(LISP function)";
 key = "text";

 label = "text";
 mnemonic = "char";

 layout = horizontal | vertical;
 max_value = integer;
 min_value = integer;
 big_increment = integer;
 small_increment = integer;
 value = "text";

 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;

 alignment = left | right | centered;
}

LABEL & MNEMONIC

The label and mnemonic attributes name the slider. Alternatively, you could use the boxed_row
attribute to give the slider its label, as illustrated below:

 : boxed_row {
 label = "Slider: "; mnemonic = "S";
 : slider {
 max_value = 100;
 min_value = -100;
 big_increment = 10;
 small_increment = 1;
 value = "0";
 }
 }

In addition to not labeling the slider, this tile provides no way to indicate to users the meaning of
the minimum and maximum values. The workaround is to add a row of text underneath the slider,
as illustrated here.

Notice that you need to use the spacer tile to position the three pieces of text appropriately:
 : row {
 : text { value = "-100"; alignment = left; }
 : spacer {width = 11; }
 : text { value = "0"; alignment = centered; }
 : spacer {width = 8; }
 : text { value = "100"; alignment = right; }
 }

540 Customizing BricsCAD V19

LAYOUT

The layout attribute determines if the slider is horizontal (default) or vertical, as illustrated below.
 layout = vertical;

Horizontal sliders don’t need to have a height or width attribute, because the default values are just
fine. Vertical sliders, need the height specified, otherwise they end up with no height, as illustrated
below. I suggest setting height = 10.

Using both a horizontal and vertical slider lets you create scroll bars for panning images.

MAX_VALUE

The max_value attribute specifies the upper limit of the scroll bar; default = 10000. It limits the
maximum value when the slider is at the right (or top) end of the bar. You can use any integer be-
tween -32768 and 32767. If you need larger values, then use LISP code to multiply them.
 max_value = 32767;

Min_value Max_value

MIN_VALUE

The min_value attribute specifies the lower limit of the scroll bar; default = 0. It limits the mini-
mum value when the slider is at the left (or bottom) end. You can use any integer between -32768
and 32767. To reverse the action of the scroll bar, use a larger value for min_value and a smaller
one for max_value.
 min_value = -32768;

BIG_INCREMENT

The big_increment attribute specifies the value of clicking the bar on either side of the slider. The
default is 0.1 of the range between max_value and min_value. You can use any integer between
the values of those two attributes.

 C Concise DCL Reference 541

 big_increment = 100;

Small_increment Big_increment

SMALL_INCREMENT

The small_increment attribute specifies the value of clicking the arrows. The default is 0.01 of the
range between max_value and min_value.
 small_increment = 1;

VALUE

The value attribute specifies the slider’s initial position. Even though the value is an integer, it must
be enclosed in quotation marks. The default is the same as min_value.
 value = "1000";

HEIGHT

The height attribute specifies the size of vertical sliders; it has no effect on horizontal sliders. Height
is measured in lines (of text). You have to specify a height for vertical sliders to avoid the problem
described on the previous page.
 height = 10;

WIDTH

The width attribute specifies the size of horizontal sliders; it has no effect on vertical sliders. Width
is measured in character (of text). You don’t have to specify a width for horizontal sliders, because
the default is satisfactory.
 width = 40;

FIXED_HEIGHT & FIXED WIDTH

The fixed_height and fixed_width attributes prevent DCL from expanding the slider to fit available
space in the dialog box. Default in both cases is false, which means the height and width are not
fixed. I suspect these attributes actually have no effect.
 fixed_height = true;
 fixed_width = true;

ALIGNMENT

The alignment attribute is supposed to shift the slider bar left or right, but I don’t see that this
attribute has any effect. The default is centered.

 alignment = right;

542 Customizing BricsCAD V19

TEXT

The text tile displays text in the dialog box. The text is static when specified in the DCL file, or
dynamic when specified in the LSP file.

Label

: text {
 label = "text";
 is_bold = false | true;

 value = "text";
 key = "text";

 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;

 alignment = left | right | centered;
}

LABEL

The label attribute specifies the text displayed by the dialog box. It is recommended that use this
attribute for static text — text that doesn’t change.
 label = "Text label";

VALUE

The value attribute also specifies text displayed by dialog box. Bricsys recommends you use this
attribute for dynamic text — text that’s specified by the accompanying LISP code. For dynamic text,
value is set to null, as shown here:
 value = "";

Make sure you include the width attribute so that there is sufficient space for the text message.
BricsCAD does not wrap text that is too long for the dialog box; text is truncated. And include the
key attribute so that the LISP code can identify the text tile.
 : text {
 value = "";
 key = "textField1";
 width = 40;
 }

To display error messages or feedback on users’ choices, use the set_tile function to assign text to
the tile in the LISP code, like this:
 (set_tile "textField1" "Error: Cannot set that value.")

The combination of DCL and LSP code results in the following display by the dialog box:

TIP	 If	both	label and	value are	used	in	the	text tile	code,	however,	then	value’s	text	is	displayed	by	
the	dialog	box.

 C Concise DCL Reference 543

IS_BOLD

The is_bold attribute should boldface the text, but appears to not work.
 is_bold = true;

HEIGHT & WIDTH

The height and width attributes size the text tile. Height starts measuring from the top of the text,
and is measured in lines. Width starts from the left end of the text, and is measured in characters.

 height = 5;

 width = 40;

Width = 40;

Height = 5;

FIXED_HEIGHT & FIXED WIDTH

The fixed_height and fixed_width attributes prevent DCL from expanding the text area to fit
available space in the dialog box. Default in both cases is false, which means the height and width
are not fixed.
 fixed_height = true;

 fixed_width = true;

ALIGNMENT

The alignment attribute shifts the text to the left, right, or center of its width.

 alignment = right;

TEXT_PART

The text_part tile displays text without margins, the blank space around text. It is meant to combine
several pieces of text into one line, when used with the concatenation tile.
 : text_part {

 label = "text";

 }

544 Customizing BricsCAD V19

CONCATENATION

The concatenation tile strings together two or more text and/or text_part tiles. In the figure below,
I have outlined in blue the two sections of text.

 : concatenation {

 : text_part { label = "A small step"; }

 : text_part { label = "for a man."; }

 }

PARAGRAPH

The paragraph tile stacks lines of text, as illustrated below.

 : paragraph {

 : text_part { label = "A small step"; }

 : text_part { label = "for a man."; }

 }

Errtile
The errtile tile defines a horizontal space for reporting error messages. It appears at the bottom
of dialog boxes, and its key is "error."
 errtile;

You use it in conjunction with the set_tile function in the accompanying LISP code.
 (set_tile "error" "Error: Cannot set that value.")

 C Concise DCL Reference 545

SPACER

The spacer tile defines a vertical and/or horizontal space. The figure shows a 10x50 spacer outlined
in blue, below. The spacer is measured in characters.

Width = 50;

Height = 10;

: spacer {
 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;

 alignment = left | right | centered;
}

SPACER_0

The spacer_0 tile defines a variable-width space that spaces itself automatically.
 spacer_0;

SPACER_1

The spacer_1 tile defines a very narrow space.
 spacer_1;

IMAGE

The image tile defines a rectangular area for displaying an image — it’s kind of like a colored
spacer. It can display things like text font samples, hatch pattern samples, color samples, or icons
that represent drawing and editing commands.

The easiest form is is the color sample, as illustrated by the yellow rectangle below, because it is
merely specified by the color attribute.

Images of hatch patterns, fonts, and so on can be placed on the image tile through the accompany-
ing LISP code’s callback function (set_tile) and the key attribute.

546 Customizing BricsCAD V19

There are two sources of image you can use:

•	 SLD	slide	files,	which	are	created	ahead	of	time	with	the	command	that	makes	slides	in	BricsCAD,	and	then	

placed	with	LISP’s	slide_image	function.

•	 Vector	lines,	which	are	drawn	on-the-fly	by	LISP’s	vector_image	function.
 : image {
 action = "(LISP function)";
 key = "text";
 value = "text";
 mnemonic = "char";
 color = colornumber;
 aspect_ratio = number;
 height = number;
 width = number;
 is_enabled= true | false;
 is_tab_stop= true | false;
 fixed_height = false | true;
 fixed_width = false | true;
 alignment = left | right | centered;
}

KEY

The key attribute identifies the image tile to the accompanying LISP code, so that the slide image
can be placed in the dialog box.
 key = "image1";

Value and Mnemonic
The value and mnemonic attributes appear to have no effect.

COLOR

The color attribute defines the color of the image tile. When you leave out this attribute, the color
is black (default).

Use the same color numbers as for the image_button tile. A popular number is -15, which displays
the same color as that of the dialog box’s background — usually gray.
 color = -15;

Number Color Name Meaning

 Default color is black
0 black ACI color 0 (black or white) 1
1 red ACI 2 color 1
2 yellow ACI color 2
3 green ACI color 3
4 cyan ACI color 4
5 blue ACI color 5
6 magenta ACI color 6
7 white ACI color 7 (white or black) 1

-1 graphics_foreground Current default color of entities (usually ACI 7) . 1

-2 graphics_background Current background color of BricsCAD’s graphics screen .
-3 blue
-4 black

 C Concise DCL Reference 547

-5 gray
-6 black
-7 red
-15 dialog_background Current color of dialog box background (usually gray) .
-16 dialog_foreground Current color of dialog box text (usually black) .
-18 dialog_line Current color of dialog box lines (usually black) .

Notes:
1 The color is white when the background color is dark, but black when the background is light .
2 ACI is short for "BricsCAD Color Index," and refers to the 256 color numbers .

ASPECT_RATIO, HEIGHT, & WIDTH

You use any two of these three attributes. The aspect_ratio attribute specifies the ratio between
the height and width of the image tile, and must be used with either the height or the width at-
tribute — but not both. Similarly, if you use the height and width attributes, you cannot use the
aspect_ratio attribute. Examples:
 aspect_ratio = 1.333;
 height = 3;

Or...
 aspect_ratio = 1.333;
 width = 4;

Or...
 height = 3;
 width = 4;

COLUMN

The column tile defines a vertical column of tiles. This tile is not normally needed, because tiles are
stacked vertically by default. You would use it when you want two columns of tiles in the dialog box.

Width = 12;

Height = 5;

Label

: column {
 label = "text";
 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;
 children_fixed_height = false | true;
 children_fixed_width = false | true;
 alignment = left | right | centered;
 children_alignment = left | right | centered;
}

548 Customizing BricsCAD V19

LABEL

The label attribute provides a title for the column. Curiously, when the label is not used, then the
column is unboxed; when a label is used, the column is boxed automatically — jsut as if it were the
boxed_column tile.
 label = "Column";

HEIGHT & WIDTH

BricsCAD normally sizes the column automatically. You can use the height and width attributes to
specify a larger size; height is measured in lines of text, width in characters.

 height = 10;

 width = 40;

CHILDREN_FIXED_HEIGHT, CHILDREN_FIXED_WIDTH, & CHILDREN_ALIGNMENT

The children_fixed_height and children_fixed_width attributes fix the height and width of clus-
tered tiles; these attributes can be overridden by the children’s attributes.
 children_fixed_height = true;

 children_fixed_width = true;

The children_alignment attribute sets the alignment of clustered tiles; this attribute can be over-
ridden by the children’s alignment attributes.
 children_alignment = centered;

BOXED_COLUMN

The boxed_column tile places a box around a column of tiles. It is identical to the column tile,
except that the box appears whether or not the tile has a label. The figure below illustrates the box
without a label.

: boxed_column {
 label = "text";
 height = number;
 width = number;
 children_fixed_width = false | true;
 fixed_height = false | true;
 fixed_width = false | true;
 children_fixed_height = false | true;
 alignment = left | right | centered;
 children_alignment = left | right | centered;
}

 C Concise DCL Reference 549

RADIO-COLUMN & BOXED_RADIO_COLUMN

The radio_column and boxed_radio_column tiles define vertical columns for radio buttons. The
only difference from the boxed_column and column tiles is the addition of the value attribute,
which specifies which radio button is turned on.
: radio_column { // or : boxed_radio_column {
 label = "text";
 value = "number";
 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;
 children_fixed_height = false | true;
 children_fixed_width = false | true;
 alignment = left | right | centered;
 children_alignment = left | right | centered;
}

VALUE

The value attribute specifies which radio button is turned on, the first button being #0.
 value = "2";

ROW & BOXED_ROW

The row and boxed_row tiles define a horizontal row of other tiles, called "children" or "clustered
tiles." Like columns, including a label to the row tile adds the box; no label, no box. Otherwise, the
two tiles are identical.

: row { // or : boxed_row {
 label = "text";
 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;
 children_fixed_height = false | true;
 children_fixed_width = false | true;
 alignment = left | right | centered;
 children_alignment = centered | top | bottom;
}

OTHER ATTRIBUTES

Attributes are identical to those of the column tile, except that the children_alignment attribute
is vertically oriented: top, bottom, or centered.

550 Customizing BricsCAD V19

RADIO_ROW & BOXED_RADIO_ROW

The radio_row tile defines a horizontal row of radio buttons.
: radio_row { // or : boxed_radio_row {
 label = "text";
 value = "number";

 height = number;
 width = number;
 fixed_height = false | true;
 fixed_width = false | true;
 children_fixed_height = false | true;
 children_fixed_width = false | true;

 alignment = left | right | centered;
 children_alignment = centered | top | bottom;
}

VALUE

The value attribute specifies which radio button is turned on, the first button being #0.
 value = "2";

 C Concise DCL Reference 551

LISP Functions for Dialog Boxes

Dialog boxes are designed by DCL files and displayed by LISP routines. The most basic LISP routine
to load, display and unload dialog boxes looks like this:
(defun c:functionName (/ dlg-id)
 (setq dlg-id (load_dialog "fileName"))
 (new_dialog "dialogName" dlg-id)
 ; Insert get_tile, set_tile, action_tile,
 ; and other functions here.
 (start_dialog)
 (unload_dialog dlg-id)
)

A fileName.dcl file specifies the layout of the dialog box. The most basic file looks like this:
 dialogName : dialog {
 // Insert tiles here.
 ok_only;
 }

This section of the chapter describes the LISP functions that interact with dialog boxes in the fol-
lowing order:
load_dialog
 new_dialog
 start_dialog
 done_dialog
 term_dialog

get_tile
 set_tile
 get_attr
 mode_tile
 action_tile
 client_data_tile

start_list
 add_list
 end_list

start_image
 slide_image
 fill_image
 vector_image
 dimx_tile
 dimy_tile
 end_image

alert
 help
 acad_helpdlg
 acad_colordlg
 acad_truecolordlg
 initdia

552 Customizing BricsCAD V19

LOAD_DIALOG

The load_dialog function loads .dcl files that define dialog boxes, and returns a fileid (the identify-
ing number assigned by the operating system to open files) handle.
(load_dialog "dclFile")

 dclFile —	name	of	the	.dcl file.	It	is	in	quotation	marks.	Remember	to	use	double-slash	path	separators,	as	

shown	below.	The	".dcl"	extension	is	not	required.
 (load_dialog "c:\\filename"))

This function is usually used with setq to store the value of the handle, as follows:
(setq dclId (load_dialog "c:\\filename"))

This function returns a fileid handle such as 30, when successful, or -1 if not.

NEW_DIALOG

The new_dialog function actives activates a named dialog box. This function is needed because
.dcl files can contain more than one dialog box definition. Thus, load_dialog is used to load the .dcl
file, and then new_dialog is used to access the specific dialog box.
(new_dialog dlgName dclId action screenPt)

 dlgName —	string	identifying	the	dialog	box	in	the	.dcl file.

 dclId	—	DCL	fileid	handle	retrieved	earlier	by	the	load_dialog	function.

 action —	[optional]	string	containing	the	LISP	expression	that	executes	as	default	action	when	users	picks	

tiles	that	don’t	have	a	DCL	action	or	LSP	callback	assigned	by	the	action_tile	function.

 screenPt —	[optional]	2D	point	list	specifying	the	x,y-location	of	the	dialog	box’s	upper	left	corner	of	the	Bric-

sCAD	window.	Use	‘(-1 -1)	to	open	the	dialog	box	in	the	center	of	the	BricsCAD	window.	To	use	this	argument	

without	the	action	argument,	enter	"",	as	follows:
 (new_dialog dlgName dcl_id "" ‘(10,10))

This function returns T when successful, or nil if not.

START_DIALOG

The start_dialog function displays the dialog box. Before this function is executed, you should set
up callbacks and other functions. This function has no arguments.
(start_dialog)

This function returns 1 when users exit the dialog box by clicking OK, or 0 if they click the Cancel
button. A -1 is returned when the dialog box is closed by the term_dialog function.

 C Concise DCL Reference 553

DONE_DIALOG

The done_dialog function closes the dialog box.
(done_dialog status)

 status —	positive	integer	returned	by start_dialog,	the	meaning	of	which		the	application	determines.	For	

this	to	work,	done_dialog	must	be	called	from	a	callback	function	such	as		action_tile.

This function returns a 2D point list in the form of '(x,y). It identifies the position of the upper-left
corner of the dialog box at the time the user exited it. This allows you to reopen the dialog box in
the same location.

TERM_DIALOG

The term_dialog function terminates dialog boxes. It is called by BricsCAD when applications (LISP
routines) terminate while .dcl files are still open. This function has no arguments.
(term_dialog)

This function always returns nil.

UNLOAD_DIALOG

The unload_dialog function unloads .dcl files from memory.
(unload_dialog dclId)

 dclId —	specifies	the	file-id	handle	first	acquired	by	the	load_id	function.

This function always returns nil.

GET_TILE

The get_tile function retrieves the values of tiles.
(get_tile key)

 key —	identifies	the	tile	to	be	accessed.

This function returns a string containing the value of the tile’s value attribute.

SET_TILE

The set_tile function sets the value of dialog box tiles.
(set_tile key value)

 key —	identifies	the	tile	to	be	processed.

 value —	specifies	a	string	that	contains	the	new	value	to	be	assigned	to	the	tile’s	value attribute.	

This function returns the new value of the tile.

554 Customizing BricsCAD V19

GET_ATTR

The get_attr function retrieves the DCL value of the tile’s attribute.
(get_attr key attribute)

 key —	identifies	the	tile	to	be	processed.

 attribute –	identifies	the	attribute	whose	value	is	to	be	retrieved.	

This function returns a string with the attribute’s as found in the DCL file.

MODE_TILE

The mode_tile function sets the mode of dialog box tiles. This allows you to change, for example,
buttons from active (normal) to inactive (grayed out).
(mode_tile key mode)

 key —	identifies	the	tile	to	be	processed.

 mode —	specifies	the	action	to	be	applied	to	the	tile:

Mode Meaning

0 Enables the tile .
1 Disables the tile (grays it out) .
2 Sets focus to the tile .
3 Selects the contents of the edit box .
4 Toggles image highlighting .

This function returns nil.

ACTION_TILE

The action_tile function assigns action to be evaluated when users select the dialog box’s tile.
(action_tile key action)

TIP	 The	action	assigned	by	this	function	overrules	the	action	defined	by	the	tile’s	action attribute,	as	
well	as	the	action	specified	by	the	new_dialog	function.

 key —	identifies	the	tile	to	be	processed.

 action —	a	string	that	specifies	the	action,	usually	an	LISP	function.	(LISP’s	command function	cannot	be	

used,	unfortunately.)		You	can	use	the	following	metacharacters:

Metacharacter Meaning

$value Current value of the tile .
$key Name of the tile .
$data Application-specific data set by client_data_tile .
$reason Callback reason .
$x and $y Image’s x,y coordinates .

This function returns T.

 C Concise DCL Reference 555

CLIENT_DATA_TILE

The client_data_tile function associates data from a function with a tile in the dialog box.
(client_data_tile key data)

 key —	identifies	the	tile	to	be	processed.

 data —	specifies	the	string	containing	the	data.	

TIP	 Functions	can	refer	to	this	data	as	$data.

This function returns nil.

START_LIST

The start_list function starts processing list boxes and popup boxes.
(start_list key operation index)

 key —	identifies	the	list	box	or	popup	box	being	processed.

 operation —	[optional]	specifies	the	operation	being	performed;	default	is	to	delete	the	exiting	list,	and	re-

place	it	with	a	new	one	specified	by	the	add_list	function.	The	operations	are:

Operation Meaning

1 Change selected list contents
2 Append new list entry
3 Delete old list and create new list (the default)

 index —	[optional]	specifies	which	list	item	to	modify;	default	is	#0,	the	first	item.

This function returns the name of the list.

TIPS	 In	all	cases,	you	use	the	list-related	functions	in	this	order:	
	 	 (start_list)	
	 	 (add_list)	
	 	 (end_list)	
	
You	are	warned	against	using	the	set_tile	function	between	start_list	and	end_list,	because	that	would	
change	the	nature	of	the	list.	
	
All	actions	by	the add_list function	apply	only	to	the	list	specified	by	start_list;	to	switch	to	a	different	list,	

use	end_list	and	then	start_list.

ADD_LIST

The add_list function adds or modifies strings in list and popup boxes, depending on the operation
specified by start_list.
(add_list strings)

 strings —	specifies	the	list	of	items	to	add	or	replace	in	the	list.	The	string	uses	quotation	marks	to	separate	

items	in	the	list,	as	follows:
 (add_list "firstItem" "secondItem" "thirdItem")

This function returns the string, if successful; otherwise nil, if not.

556 Customizing BricsCAD V19

END_LIST

The end_list function ends processing of list and popup boxes.
(end_list)

This function returns nil.

START_IMAGE

The start_image function starts creating vector or slide images in dialog boxes.
(start_image key)

 key —	specifies	the	key	name	of	the	image	tile.

This function returns the value of key; otherwise nil, if unsuccessful.

TIP	 Typically,	you	use	the	image-related	functions	in	this	order:	
	 	 (start_image)	
	 	 (fill_image)	
	 	 (slide_image)	or (vector_image)	
	 	 (end_image)

SLIDE_IMAGE

The slide_image function displays slides in dialog box image tiles.
(slide_image x y width height sldName)

 x —	specifies	the	number	of	pixels	to	offset	the	image	from	the	upper-left	corner	of	the	tile,	in	the	x	direc-

tion.	

 y —	specifies	the	number	of	pixels	to	offset	the	image	from	the	upper-left	corner	of	the	tile,	in	the	y	direc-

tion.	

 width —	specifies	the	width	of	the	image	in	pixels.

 height —	specifies	the	height	of	the	image	in	pixels.

 sldName —	specifies	the	name	of	the	slide	image	to	display,	which	can	be	in	an	SLD	slide	file	or	SLB	slide	

library	file.	When	in	a	library,	use	this	format:
 (slide_image 0 0 40 30 sldlibName(sldName))

0,0

Dimx_tile, Dimy_tile

sldName

This function returns the name of the sldName as a string.

 C Concise DCL Reference 557

TIPS		 X	and	Y	are	always	positive.	
	
The	coordinates	of	the	upper	left	corner	are	0,0.	
	
You	can	get	the	coordinates	of	the	lower-right	corner	through	dimx_tile	and dimy_tile,	like	this:	
	 (slide_image 0	0	(dimx_tile	“slide_tile”)	(dimy_tile	“slide_tile”)	“sldName”)

FILL_IMAGE

The fill_image function draws filled rectangles in dialog boxes.
 (fill_image x y width height color)

 x —	specifies	the	number	of	pixels	to	offset	the	image	from	the	upper-left	corner	of	the	tile,	in	the	x	direc-

tion.	

 y —	specifies	the	number	of	pixels	to	offset	the	image	from	the	upper-left	corner	of	the	tile,	in	the	y	direc-

tion.	

 width —	specifies	the	width	of	the	image	in	pixels.

 height —	specifies	the	height	of	the	image	in	pixels.

 color —	specifies	the	color	using	ACI,	or	one	of	the	following	special	numbers:

Number Meaning

-2 Current background color of BricsCAD’s drawing area .
-15 Current background color of the dialog box .
-16 Current text color of the dialog box .
-18 Current color of dialog box lines .

This function returns an integer representing the ACI fill color.

TIP	 This	function	must	be	used	between	the	start_image	and	end_image	functions.

VECTOR_IMAGE

The vector_image function draws vectors in dialog box image tiles.
 (vector_image x1 y1 x2 y2 color)

x1,y1
Background color

x2,y2 Line color

 x1 —	specifies	the	x	coordinate	of	the	starting	point.

 y1 —	specifies	the	y	coordinate	of	the	starting	point.

 x2 —	specifies	the	x	coordinate	of	the	starting	point.

 y2 —	specifies	the	y	coordinate	of	the	starting	point.

 color —	specifies	the	color	using	ACI,	or	one	of	the	special	numbers	listed	above.

TIP	 One	vector	(line)	is	drawn	with	each	call	of	this	function.	The	line	is	drawn	from	x1,y1	to	x2,y2.	

558 Customizing BricsCAD V19

DIMX_TILE & DIMY_TILE

The dimx_tile function returns the x-dimension of the image tile’s lower right corner; the dimx_tile
function does the same for the y-dimension.
(dimx_tile key)

(dimy_tile key)

 key —	specifies	the	key	name	of	the	image	tile.

x-1, y-1

0,0

These functions return the "x-1" width and "y-1" height of the tile.

TIPS	 Caution:	These	functions	return	x,y	coordinates	are	one less	than	the	total	x	and	y	dimensions	of	
the	tile,	because	the	upper-right	corner	is	0,0.		
	

These	functions	are	meant	for	use	with	the	slide_image, fill_image,	and	vector_image functions.	

END_IMAGE

The end_image function signals the end of the image tile’s definition.
(end_image)

This function returns nil.

 C Concise DCL Reference 559

DIALOG BOXES DISPLAYED BY LISP FUNCTIONS

The following LISP functions display BricsCAD dialog boxes.

Alert
The alert function displays the alert dialog box with customized warning. You can use the \n
metacharacter to include line breaks.
(alert "Help me!\nI’ve fallen and I can’t get up!")

Help)
The help function displays the Help window.

Acad_HelpDlg
The acad_helpdlg function displays the old-style Help dialog box with .hlp files.
(acad_helpdlg "acadctxt.hlp" "topic")

AcadColorDlg
The acad_colordlg function displays the Select Color dialog box with just the Index Color tab.
(acad_colordlg colorNum flag)

 colorNum —	specifies	the	default	color	number;	ranges	from	0	to	256.This	integer	is	a	required	argument,	even	

when	you	don’t	want	to	specify	a	default.	

	 	 0 =	ByBlock	color.

	 	 256 =	ByLayer	color.

 flag —	[optional]	disables	the	ByLayer and	ByBlock buttons	when	set	to	nil.	

For example, to open the Select Color dialog box, set red (1) as the default color, and gray out the
By-buttons, use this form of the function:
(acad_colordlg 1 nil)

This function returns the number of the color selected by the user, or nil when the user clicks Cancel.

Acad_TrueColorDlg
The acad_truecolordlg function displays the Select Color dialog box with all tabs.
(acad_truecolordlg color flag byColor)

 color —	specifies	the	the	default	color	as	a	dotted	pair,	where	the	first	value	is	the	DXF	code	for	the	type	of	

color	specification:

	 	 62 =	ACI	(index	color).

	 	 420 =	TrueColor	spec	in	RGB	(red-green-blue)	format.

	 	 430 =	color	book	name	(not	supported	by	BricsCAD).

560 Customizing BricsCAD V19

 Use the following formats:

Color Format Dotted Pair Format Example for Red

ACI (62 . ColorIndex) (62 . 1)
TrueColor (420 . "red,green,blue") (420 . "255,0,0")
Color Book (430 . "colorbook$colorname") (430 . "RAL CLASSIC$RAL 3026")

 flag —	[optional]	disables	the	ByLayer and	ByBlock buttons	when	set	to	nil.	

 byColor —	[optional]	sets	the	value	of	ByLayer	and	ByBlock	color;	use	the	same	format	as	for	color.	

This function returns the color selected by the user in dotted-pair format. The list may contain more
than one dotted-pair; the last one is the one selected by the user. For example, if the user selects
from a color book, then the list contains the 430 pair (specifying the color book), as well as a 420
pair containing the TrueColor value and a 62 pair describing the closest ACI value. Color books are
not supported by Bricscdad.

Nil is returned when the user clicks Cancel.

InitDia
The initdia function forces the display of the dialog box of the following command, such as:
(initdia flag)

(command "image")

 flag —	[optional]	when	0,	resets	command	to	display	prompts	at	the	command	line.

This function is meant for commands that normally display their prompts at the command line
during LISP routines. These include AttDef, AttExt, Hatch (BHatch in older versions of BricsCAD),
Block, Color, Image (ClassicImage in BricsCAD 2007), ImageAdjust, Insert, Layer, Linetype, MText,
Plot, Rename, Style, Toolbar, and View.

This function always returns nil.

APPENDIX D

Concise LISP Reference

This appendix offers an alphabetical list of functions for the LISP programming language:

 Blue	text	indicates	functions	unique	to	BricsCAD	(not	found	in	AutoLISP).	

 Green	text	indicates	functions	specific	to	controlling	DCL	dialog	boxes.

 Italicized	text	indicates	parameter(s).

 [square brackets]	indicate	optional	parameters.

 ellipsis ...	indicate	that	additional	parameters	are	permitted

 Pi is	defined	in	LISP	as	a	constant,	3.141...

562 Customizing BricsCAD V19

LISP Function Summary

A

(abs) Returns absolute value of number
(abs number)

(acad_colordlg) Displays the Select Color dialog box
(acad_colordlg color-number [flag])

(acad_strlsort) Sorts list of strings in alphabetical order
(acad_strlsort list)

(action_tile) Responds when the user clicks a dialog box tile
(action_tile key expression)

(acos) Returns the arc cosine of x.
(acos x)

(add_list) Adds text to an existing dialog box string
(add_list string)

(ads) Reports which applications are loaded into BricsCAD
(ads)

(alert) Displays a message box
(alert string)

(alloc) Sets the memory segment size for LISP
(alloc integer)

(and) Returns logical AND of the supplied arguments
(and expression)

(angle) Returns the angle (in radians) of the line defined by two points
(angle point1 point2)

(angtof) Converts string representation of angle to radians
(angtof string [mode])

(angtos) Converts angle (radians) to string representation
(angtos angle [mode [precision]])

(append) Appends list arguments to one list
(append list1 list2)

(apply) Applies the specified function for each argument supplied iin the list
(apply function list)

(arx) Returns a list of the currently loaded ObjectARX applications
(arx)

(arxload) Loads an ObjectARX application
(arxload application [onfailure])

(arxunload) Unloads an ObjectARX application
(arxunload application [onfailure])

 D Concise LISP Reference 563

(ascii) Converts the first character of string to its ASCII char code (integer)
(ascii string)

(asin) Returns the arc sine of x.
(asin x)

(assoc) Finds the first matching item in the list
(assoc item list)

(atan) Returns arctangent
(atan number1 [number2])

(atanh) Returns the hyperbolic arc tangent of x.
(atanh x)

(atof) Converts a string to a real number
(atof string)

(atoi) Converts a string to an integer
(atoi string)

(atom) Confirms that an item is an atom
(atom item)

(atoms-family) Returns a list of the currently defined symbols
(atoms-family format [symbol1 symbol2])

(autoload) Loads the LISP application automatically when one of its commands is used
(autoload application list)

B

(boole) Applies the bitwise Boolean function
(boole function integer1 integer2)

(boundp) Confirms that this item has a value bound to it
(boundp item)

C

(caddr) Returns the third item of the list
(caddr list)

(cadr) Returns the second item of the list
(cadr list)

(car) Returns the first item of the list
(car list)

(cdr) Returns everything in the list except the first item
(cdr list)

(ceiling) Returns the smallest integer that is not smaller than x.
(ceiling x)

(chr) Converts the integer (ASCII char code) to a single-character string
(chr integer)

564 Customizing BricsCAD V19

(client_data_tile) Associates data with a dialog box tile
(client_data_table key data)

(close) Close an open file
(close file-descriptor)

(command) Launches the BricsCAD command
(command cmd [arguments])

(cond) Compares conditional statements
(cond (statement1 result1))

(cons) Adds this item to the beginning of the list
(cons item list)

(cos) Calculates the cosine
(cos angle)

(cosh) Returns the hyperbolic cosine of x.
(cosh x)

(cvunit) Converts a value from one unit of measurement to another
(cvunit value from to)

D

(defun) Defines a LISP function
(defun [c:] name ([arg1 arg2] / [local-var1 local-var2]) expression)

(dictadd) Adds a nongraphical object to a dictionary
(dictadd ename symbol newobj)

(dictnext) Finds the next item in a dictionary
(dictnext ename [rewind])

(dictremove) Removes an item from a dictionary
(dictremove ename symbol)

(dictrename) Renames a dictionary entry
(dictrename ename oldsym newsym)

(dictsearch) Searches a dictionary for an item
(dictsearch ename symbol [setnext])

(distance) Determines the distance between two points
(distance point1 point2)

(distof) Converts a string to a real number
(distof string [mode])

(done_dialog) Terminates the dialog box
(done_dialog [flag])

 D Concise LISP Reference 565

E

(end_image) Ends the creation of a dialog box image
(end_image)

(end_list) Ends the processing of a dialog box list
(end_list)

(entdel) Deletes the entity
(entdel entity-name)

(entget) Retrieves the entity’s definition data
(entget entity-name [application-list])

(entlast) Gets the last entity in the drawing
(entlast)

(entmake) Adds an entity to the drawing
(entmake [entity-list])

(entmakex) Makes a new entity, give it a handle and return it’s new entity name
(entmakex [entity-list])

(entmod) Modifies the entity
(entmod entity-list)

(entnext) Returns the next entity in the drawing
(entnext [entity-name])

(entsel) Prompts the user to select an entity
(entsel [prompt])

(entupd) Redraws the entity
(entupd entity-name)

(eq) Determines whether two expressions are bound to the same symbol
(eq statement1 statement2)

(equal) Determines whether two statements are the same within an optional tolerance value
(equal statement1 statement2 [tolerance])

(*error*) Displays an error message
(*error* string)

(eval) Evaluates the LISP expression
(eval statement)

(exit) Terminates
(exit)

(exp) Calculates the natural exponent
(exp number)

(expand) Allocates additional memory for LISP
(expand integer)

(expt) Raises the number to the specified power
(expt base power)

566 Customizing BricsCAD V19

F

(fill_image) Fills a dialog box’s rectangle with color
(fill_image x y width height color)

(find) Returns item if item is found in list, otherwise it returns nil.
(find item list)

(findfile) Searches for the specified file or directory
(findfile filename)

(fix) Converts a real number to the nearest integer
(fix number)

(float) Converts an integer to a real
(float number)

(floor) Returns the greatest integer less than or equal to x.
(floor x)

(foreach) Evaluates the expression to every item in the list
(foreach variable list expression)

G

(gc) Performs garbage collection
(gc)

(gcd) Calculates the greatest common denominator
(gcd integer1 integer2)

(get_attr) Determines the attribute of a dialog box’s key
(get_attr key attribute)

(get_diskserialid) Returns a 9-digit unique id string, based on the first hard disk serial number. If the hard disk serial number can
not be obtained in very rare cases, the 9-digit unique id string is based on the serial number of the first partition. This id string
provides a licensing/hardlocking feature for LISP applications.

(get_diskserialid)

(get_tile) Determines the value of a dialog box’s tile
(get_tile key)

(getangle) Prompts the user to specify an angle
(getangle [point] [prompt])

(getcfg) Determines the value of the parameter
(getcfg parameter)

(getcname) Determines the localized command name
(getcname [_]command-name)

(getcorner) Prompts the user to specify the second corner of a rectangle
(getcorner point [prompt])

(getdist) Prompts the user to specify two points
(getdist [point] [prompt])

(getenv) Determines the value of the operating system variable
(getenv variable)

 D Concise LISP Reference 567

(getfiled) Displays the Open File dialog
(getfiled title filename ext flags)

(getint) Prompts the user to enter an integer
(getint [prompt])

(getkword) Prompts the user to select a keyword
(getkword [prompt])

(getorient) Prompts the user to specify an angle
(getorient [pt] [prompt])

(getpid) Returns the process ID of the current process.
(getpid)

(getpoint) Prompts the user to select a point
(getpoint [point] [prompt])

(getreal) Prompts the user to select a real number
(getreal [prompt])

(getstring) Prompts the user to enter a string
(getstring [flag] [prompt])

(getvar) Returns the value of a system variable
(getvar sysvar)

(graphscr) Switches to the graphics window
(graphscr)

(grarc) Draws a temporary arc or circle, with specified radius and color; optionally highlighted
(grarc ptCenter radius startAng endAng color [minsegments] [highlight])

(grclear) Clears the viewport
(grclear)

(grdraw) Draws a line
(grdraw point1 point2 color [highlight])

(grfill) Draws temporary filled polygon area, with specified color; optionally in highlighted mode
(grfill ptlist color [highlight])

(grread) Reads the data coming in from the input devices
(grread [flag] [bits [cursor]])

(grtext) Writes text on the status line
(grtext [flag text])

(grvecs) Draws one or more lines
(grvecs vector-lists [trans])

H

(handent) Returns the entity name based on its handle
(handent handle)

(help) Launches help
(help [filename [topic [flag]]])

568 Customizing BricsCAD V19

I

(if) Evaluates expressions conditionally
(if test statement1 [statement2])

(initdia) Forces the dialog box version of a command
(initdia [flag])

(initget) Initializes the keywords for next user-input
(initget [bits] [string])

(inters) Finds the intersection
(inters point1 point2 point3 point4 [flag])

(itoa) Converts integer to string
(itoa integer)

L

(lambda) Defines an unnamed LISP function
(lambda arguments expression)

(last) Returns the last item in the list
(last list)

(length) Returns the number of elements contained in a list
(length list)

(list) Create a list
(list expression ...)

(listp) Confirms that an item is a list
(listp item)

(load) Loads the LISP file
(load filename [flag])

(load_dialog) Loads the DCL file
(load_dialog filename)

(log) Calculates the natural logarithm
(log number)

(log10) Returns the base-10 logarithm of x.
(log10 x)

(logand) Determines what is the logical AND
(logand integer1 integer2 ...)

(logior) Determines what is the logical OR
(logior integer1 integer2 ...)

(lsh) Does a bitwise shift
(lsh integer1 integer2)

 D Concise LISP Reference 569

M

(mapcar) Applies the function to the list
(mapcar function list1 [list2])

(max) Returns the largest number
(max number1 number2 ...)

(mem) Displays the status of the LISP memory
(mem)

(member) Identifies the first occurrence of an item in the list
(member item list)

(menucmd) Executes the menu command
(menucmd string)

(menugroup) Determines whether a menu group is loaded
(menugroup name)

(min) Returns the smallest number
(min number1 number2 ...)

(minusp) Determines whether a value is a negative number
(minusp number)

(mode_tile) Sets the mode of the dialog box tile
(mode_tile key mode)

N

(namedobjdict) Returns the current drawing’s named object dictionary (Root)
(namedobjdict)

(nentsel) Prompts the user to select an entity within a complex entity
(nentsel [prompt])

(nentselp) Operates like nentsel but without user input
(nentselp [prompt] [point])

(new_dialog) Displays a dialog box
(new_dialog dialog dcl-id [function point])

(not) Determines whether an item is nil
(not item)

(nth) Determines the nth item in the list
(nth integer list)

(null) Determines whether the item is bound to nil
(null item)

(numberp) Determines whether an item is a number
(numberp item)

570 Customizing BricsCAD V19

O

(open) Opens file for access by LISP read-write-append functions
(open filename mode)

(or) Calculates the logical OR
(or statement)

(osnap) Returns 3D point as result of applying the specified entity snap
(osnap point mode)

P

(polar) Returns 3D point defined by angle and distance of specified point
(polar point angle distance)

(position) Returns the index ot item in list or nil (first index is 0).
(position item list)

(prin1) Prints string
(prin1 [expression [file-descriptor]])

(princ) Prints string taking into account control characters
(princ [expression [file-descriptor]])

(print) Prints string using formatted printing
(print [expression [file-descriptor]])

(progn) Evaluates each expression sequentially and returns the value of the last expression
(progn statement1 statement2)

(prompt) Prints message on the command line
(prompt string)

Q

(quit) Quits the current LISP routine
(quit)

(quote) Returns an expression without evaluating it
(quote statement)

R

(read) Determines the first item in a string
(read string)

(read-char) Reads a single character
(read-char [file-descriptor])

(read-line) Reads an entire line
(read-line [file-descriptor])

(redraw) Redraws the viewport or just a single entity
(redraw [ename [mode]])

 D Concise LISP Reference 571

(regapp) Registers the application
(regapp appname)

(rem) Determines the remainder of this division operation
(rem number1 number2 [number3])

(remove) Returns the input list, with item removed from the list.
(remove item list)

(repeat) Evaluates each expression a specified number of times
(repeat number statement1 [statement2])

(reverse) Returns a copy of a list with its elements reversed
(reverse list)

(round) Returns the integer nearest to x.
(round x)

(rtos) Converts real to string
(rtos number [mode [precision]])

S

(search) Searches for list1 in list2 and returns the index where found or nil (first index is 0).
(search list1 list2)

(set) Assigns the statement to the symbol
(set symbol statement)

(set_tile) Sets the value of the dialog box tile
(set_tile key value)

(setcfg) Sets the parameter to the value
(setcfg parameter value)

(setenv) Sets the operating system variable to that value
(setenv variable value)

(setfunhelp) Registers the command with that Help file
(setfunhelp “c:filename” [helpfile [topic [command-name]]]])

(setq) Sets the symbol to the statement
(setq symbol1 statement1 [symbol2 statement2])

(setvar) Sets the system variable to that value
(setvar sysvar value)

(setview) Creates a 3D viewpoint
(setview view-descriptor [vport])

(sin) Calculates the sine
(sin angle)

(sinh) Returns the hyperbolic sine of x.
(sinh x)

(slide_image) Displays a slide in the dialog box
(slide_image x y width height slide)

572 Customizing BricsCAD V19

(sleep) Delays execution for (approx.) given milliseconds
(sleep millisecs)

(snvalid) Determines whether the symbol is made-up of valid characters
(snvalid symbol [flag])

(sqrt) Calculates the square root
(sqrt number)

(ssadd) Adds the entity to the selection set
(ssadd [entity-name [selection-set]])

(ssdel) Deletes the entity from the selection set
(ssdel entity-name selection-set)

(ssget) Creates a selection set
(ssget [mode] [point1 [point2]] [point-list] [filter-list])

(ssgetfirst) Determines which entities are highlighted and/or gripped
(ssgetfirst)

(sslength) Determines how many entities are in the selection set
(sslength selection-set)

(ssmemb) Determines whether an entity is in the selection set
(ssmemb entity-name selection-set)

(ssname) Identifies the nth entity in the selection set
(ssname selection-set index)

(ssnamex) Retrieves information about how a selection set was created
(ssnamex selection-set index)

(sssetfirst) Determines which objects are selected and gripped
(sssetfirst grip-set [pick-set])

(startapp) Launches Windows application
(startapp appname [filename])

(start_dialog) Starts the dialog box
(start_dialog)

(start_image) Starts creating a dialog box image
(start_image key)

(start_list) Starts processing a list box
(start_list key [operation [index]])

(strcase) Converts string to all upper- or all lower-case
(strcase string [flag])

(strcat) Concatenates strings
(strcat string1 [string2] ...)

(string-split) Returns a list of strings divided by any character in string-of-delimiters. Example: (string-split bbb;ccc,ddd”) => (“aaa”
“bbb” “ccc” “ddd”)

(string-split string-of-delimiters string)

(strlen) Returns the number of characters in a string
(strlen [string1] [string2] ...)

 D Concise LISP Reference 573

(subst) Returns a copy of a list with its elements substituted
(subst new old list)

(substr) Returns a substring of a string
(substr string start [length])

T

(tablet) Retrieves and sets digitizer (tablet) calibrations
(tablet code [row1 row2 row3 direction])

(tan) Returns the tangent of x - x must be in radians.
(tan x)

(tanh) Returns the hyperbolic tangent of x.
(tanh x)

(tblnext) Finds the next item in a symbol table
(tblnext table-name [flag])

(tblobjname) Returns the entity name of a specified symbol table entry
(tblobjname table-name symbol)

(tblsearch) Searches the table for a symbol
(tblsearch table-name symbol [flag])

(term_dialog) Terminates the dialog box
(term_dialog)

(terpri) Prints a carriage return
(terpri)

(textbox) Returns the bounding box of a text entity
(textbox entity-list)

(textpage) Switches focus from the drawing area to the text screen
(textpage)

(textscr) Switches focus from the drawing area to the text screen
(textscr)

(trace) Turns on debug mode
(trace function)

(trans) Translates that point from one coordinate system to another
(trans point from to [flag])

(trim) Removes leading and trailing blanks
(trim string [flag])

(type) Returns the type of a specified item
(type item)

574 Customizing BricsCAD V19

U

(unload_dialog) Unloads that dialog box
(unload_dialog dcl_id)

(until) Repeats the expression(s) until test-expression evaluates as T (true).
(until test-expression [expression ...])

(untrace) Turns off debug mode
(untrace function)

V

(vector_image) Draws a vector in the dialog box
(vector_image x1 y1 x2 y2 color)

(ver) Determines the version number of this LISP
(ver)

(vmon) Turns on virtual memory
(vmon)

(vports) Gets information about this viewport
(vports)

W

(wcmatch) Performs a wild-card pattern match on a string
(wcmatch string pattern)

(while) Evaluates other expressions while test expression is true
(while test statement ...)

(write-char) Writes the character to a file
(write-char character [file-descriptor])

(write-line) Writes the string to a file
(write-line string [file-descriptor])

X

(xdroom) Determines the amount of space for xdata still available for an entity
(xdroom entity-name)

(xdsize) Determines how much space a list takes up as xdata
(xdsize list)

Z

(zerop) Determines whether this number is zero
(zerop number)

 D Concise LISP Reference 575

#

(+) Returns the sum of all numbers
(+ number1 number2 ...)

(-) Subtracts second (and following) from first number
(- number1 number2 ...)

(*) Returns the product of all numbers
(* number1 number2 ...)

(/) Divides the first number by the following numbers
(/ number1 number2 ...)

(~) Applies the 1s compliment (bitwise NOT)
(~ number)

(=) Compares arguments for equality
(= item1 item2)

(/=) Compares arguments for inequality
(/= item1 item2)

(<) Returns T if first argument is less than others
(< item1 item2)

(<=) Returns T if first argument is less than or equal to all other arguments
(<= item1 item2)

(>) Returns T if first argument is greater than all other arguments
(> item1 item2)

(>=) Returns T if first argument is greater than or equal all other arguments
(>= item1 item2)

(1+) Increments number by 1
(1+ number)

(-1) Decrements number by 1
(1- number)

	LISP Functions for Dialog Boxes
	Concise LISP Reference

	Conversion Routines
	PointToString Conversion Function
	Quick Summary of VBA Predefined Constants
	Private Function PointToString(vIn As Variant) As String
	Dim sPt As String: sPt = vbNullString
	Dim iPrecision As Integer
	iPrecision = ThisDrawing.GetVariable("LUPREC")
	If VarType(vIn) > vbArray Then
	sPt = StringFromValueFixedDecimal(vIn(0), iPrecision) & ", "
	sPt = sPt & StringFromValueFixedDecimal(vIn(1), iPrecision) & ", "
	sPt = sPt & StringFromValueFixedDecimal(vIn(2), iPrecision)
	End If
	PointToString = sPt
	End Function

	StringToPoint Conversion Function
	Dim sCoords() As String: sCoords = Strings.Split(sIn, ",")
	If UBound(sCoords) = 0 Then
	tmpPt(0) = Val(sCoords(0))

	Loading and Running LastInput.Dvb
	Quick Summary of VBA Variable Declarations

	Appendices
	Command Summary
	System Variables and Settings
	Concise DCL Reference

	LastInput.Dvb
	Quick Summary of VBA String Manipulation
	Quick Summary of VBA Data Type Return Values

	Dialog Box with Code
	Designing the Dialog Box
	Adding the Code
	Clicking Cancel
	Quick Summary of VBA Data Types

	Object-Oriented Programming
	Common Object Model
	Object Browser
	Line Entity
	Properties
	Methods
	Events

	Sending Commands
	Embedded or External
	Writing and Running VBA Routines
	Displaying Messages
	Constructing Dialog Boxes
	BricsCAD V19 Automation Object Model

	Introduction to VBA
	Accessing VBA Programs

	Additional Resources
	Dabbling in VBA
	Quick Summary of VBA Program Components
	Quick Summary of VBA Commands in BricsCAD

	Debugging DCL
	Dcl_Settings
	DCL Error Messages
	Semantic error(s) is DCL file
	Dialog has neither an OK nor a CANCEL button
	Error in dialog file "filename.dcl", line n
	Dialog too large to fit on screen

	Examples of DCL Tiles
	Buttons
	Making Buttons Work
	Check Boxes
	Radio Buttons

	Clusters
	Columns and Rows
	Boxed Row
	Boxed Row with Label
	Special Tiles for Radio Buttons

	Testing DCL Code
	LISP Code to Load and Run Dialog Boxes
	Displaying Data from System Variables
	Adding the Complimentary LISP Code
	Clustering Text
	Supplying the Variable Text
	Leaving Room for Variable Text

	Fixing the Button Width
	Centering the Button

	Testing the Dialog Box
	Defining the Command

	Your First DCL File
	DCL Programming Structure
	Start Dialog Box Definition
	Quick Summary of DCL Metacharacters

	Dialog Box Title
	OK Button
	The Default Tile

	What Dialog Boxes Are Made Of
	How DCL Operates

	Saving Data to Files
	The Three Steps
	Step 1: Open the File
	Step 2: Write Data to the File
	Step 3: Close the File

	Putting It Together
	Wishlist #5: Layers
	Wishlist #6: Text Style

	Tips in Using LISP
	Tip #1. Use an ASCII Text Editor.
	Tip #2: Loading LSP Code into BricsCAD
	Tip #3: Toggling System Variables
	Tip #4: Be Neat and Tidy.
	Tip #5: UPPER vs. lowercase
	Tip # 6: Quotation Marks as Quotation Marks
	Tip #7: Tabs and Quotation Marks

	Designing Dialog Boxes with DCL
	A Quick History of DCL

	Adding to the Simple LISP Program
	Conquering Feature Bloat
	Wishlist Item #1: Naming the Program
	Defining the Function - defun
	Naming the Function - C:
	Local and Global Variables - /
	Wishlist Item #2: Saving the Program
	Wishlist Item #3: Automatically Loading the Program
	Wishlist #4: Using Car and Cdr

	Writing a Simple LISP Program
	Why Write a Program?
	The Id Command

	The Plan of Attack
	Obtaining the Coordinates

	Placing the Text
	Putting It Together

	LISP Function Overview
	Math Functions
	Geometric Functions
	Distance Between Two Points
	The Angle from 0 Degrees
	The Intersection of Two Lines
	Entity Snaps

	Conditional Functions
	Other Conditionals

	String and Conversion Functions
	Joining Strings of Text
	Converting Between Text and Numbers
	Other Conversion Functions

	External Command Functions
	Command Function Limitation
	Accessing System Variables

	GetXXX Functions
	Selection Set Functions
	Entity Manipulation Functions
	Advanced LISP Functions

	The LISP Programming Language
	Simple LISP: Adding Two Numbers
	LISP in Commands
	Remembering the Result: setq

	The History of LISP in BricsCAD
	BLADE Environment
	Compatibility between LISP and AutoLISP
	Additional LISP Functions
	Different LISP Functions
	Missing AutoLISP Functions

	Script Commands and Modifiers
	Script
	RScript
	Resume
	Delay
	Special Characters
	Enter - (space)
	Comment - ;
	Transparent - '
	Pause - Backspace
	Stop - esc

	Programming with LISP

	Writing Scripts by Hand
	Recording with RecScript
	What are Scripts?
	Drawbacks to Scripts
	Strictly Command-Line Oriented

	Objects and Property Names
	Properties in Common
	Object Properties
	Arcs
	Attribute Definition
	Associative Dimensions
	Blocks, Block Placeholders, and External References
	Circles
	Ellipses
	Hatches
	Leaders
	Lines
	Mtext
	OLE (object linking and embedding) objects
	Polylines
	Polygon Meshes
	Polyface Meshes
	Raster Images
	Regions
	Rays and Xlines
	Shapes
	Single-line Text
	Splines
	Tables
	Tolerances
	Viewports
	3D Faces
	3D Polylines
	3D Solids
	Sheet SetS

	Named Object Properties
	Programming BricsCAD
	Writing Scripts

	Complete Field Code Reference
	Groups
	Metawords
	Formatting
	Compatibility with AutoCAD Field Codes

	Complete Format Code Reference
	%tcn — Text Case
	%lun — Linear Units
	%dsn — Decimal Separator
	%aun — Angular Units
	%lwn — Line Weight units
	%qfn — scale Factor
	%ctn — ConverT
	%ptn — PointTs (xyz coordinates)
	%.n — decimal places
	%prn — display PRecision

	%fnn — File Names
	%byn — BYtes (file size)
	href - Hyperlinks
	Date & Time Format Codes
	Quick Summary of Field Date and Time Codes

	Understanding Field Codes
	Another Field Text Example
	Updating the Field Text

	Controlling the Way Fields Update
	UpdateField Command
	FieldEval Command
	FieldDisplay Command

	Changing Field Text
	Double-clicking Fields in MText
	Editing Fields in Attribute Definitions

	Placing Field Text
	Field Command
	Fields in MText
	Fields in Attributes

	About Shape Files
	The Shape File Format
	Header Fields
	Definition Start
	shapeNumber
	totalBytes
	shapeName

	Definition Lines
	bytes

	Vector Codes
	Hexadecimal Conversion

	Instruction Codes
	End of Shape - 0/000
	Draw Mode - 1/001
	2/002: Move Mode -
	Reduced Scale - 3/003
	Enlarged Scale - 4/004
	Save (Push) - 5/005
	Recall (Pop) - 6/006
	Subshape - 7/007
	X,y Distance - 8/008
	X,y Distances - 9/009
	Octant Arc - 10/00A
	Fractional Arc - 11/ 00B
	Bulge Arc - 12/00C
	Polyarc - 13/00D
	Flag Vertical Text Flag - 14/00E

	Coding with Field Text

	Fonts, Complex Linetypes, and Shapes
	SHX Fonts
	About Fonts in BricsCAD

	Using SHX in Complex Linetypes
	SHX in Shapes
	SHX in GD&T
	Shape Compatibility with AutoCAD

	Understanding the .pat Format
	Comment and Header Lines
	Comment
	Start of Definition
	Pattern Name
	Description

	The Hatch Data
	Angle
	xOrigin and yOrigin
	xOffset and yOffset
	Dash1,...

	Adding Samples to the Hatch Palette
	Tips on Creating Pattern Codes
	Decoding Shapes and Fonts
	Quick Summary of Shape Definitions

	Creating Custom Hatch Patterns
	-Hatch Command
	Hatch Command

	Where Do Hatch Patterns Come From?
	How Hatch Patterns Work
	System Variables that Control Hatches

	Linetype Format (.lin)
	Line 1: Header
	Line 2: Data
	Complex (2D) Linetypes
	Embedding Text in Linetypes
	Text
	Text Style
	Text Scale
	Text Rotation
	Absolute
	X and Y Offset

	Patterning Hatches
	Quick Summary of Pattern Definitions

	About Simple and Complex Linetypes
	Commands Affecting Linetypes
	Loading Linetypes
	Scaling Linetypes

	System Variables Affecting Linetypes
	The Special Case of Paper Space
	The Special Case of Polylines

	Customizing the Structure Panel
	Structure Configurations
	Customizing the Structure Panel
	Structure OF .cst Files
	Group/Sort Tab
	Examining Rules
	Constructing Rules
	Show/Skip Tab
	Options Tab

	Creating Simple and Complex Linetypes
	Quick Summary of Linetype Definitions

	Organizing Tools with Groups
	Creating Palette Groups
	Importing Tool Palettes from AutoCAD
	Sharing Tool Palette Groups by Exporting Them
	Alternative Sharing Method

	Customizing Tools
	Customizing Tools Properties
	Adding Programs and Macros to Tools

	Navigating Tools Palettes
	Icon Customization
	Palette Customization

	About the Tool Palettes Panel
	Quick Summary of View Options

	Workspace Customization Elements
	Adding and Removing Workspaces
	Removing Workspaces
	About Insert Separator

	Toggling the Display of UI Elements
	Workspace Property Toggles
	Show Menus

	Toggling Visibility of UI Elements
	Toggling Menus
	Toggling Toolbars
	Toggling Panels
	Toggling Ribbons
	Toggle the Quad

	Fine-Tuning UI Elements
	Workspace Properties for Menus
	Properties of Toolbars
	Properties of Panels
	Proprieties of Ribbon Tabs
	Properties of Quad Items

	Other Customizations in BricsCAD
	Designing Tool & Structure Panels

	Customizing Rollover Properties
	Tutorial: How to Change Properties Displayed by Rollovers
	Customizing Multiple UIs with Workspaces

	Customizing the Quad
	Tutorial: Customizing Quad Buttons
	Customizing Quad Tabs
	Where’s My New Tab?
	Tutorial: Turning On Quad Groups (Tabs)
	Toggling Quad Tabs

	About Quad ENtity Filters
	Tutorial: Changing Entity Filters
	How the Quad Works. Or, How Does It Know What Entity Is There?

	Customizing Rollover Properties
	Quick Summary of Rollover Property Settings
	Quick Summary of Rollover Properties

	Defining Actions for Tablet Buttons
	Customizing the Quad
	Quick Summary of Quad Variables

	About The Quad
	Step 1: Move Cursor Onto an Entity
	Step 2: Expand the Quad
	Step 3: Move Into Groupings

	Tutorial: Drawing with Quad
	Tutorial: Dimensioning with Quad

	Modifying the Quad’s Behavior

	Defining Actions for Mouse Buttons
	Tutorial: Button Assignment
	Tutorial: Assigning Shortcut Menus to Buttons
	Tutorial: Writing Macros for Buttons

	Customizing Double-click Actions
	Changing a Double-click Action
	Making a New Double-click Action

	About Mice and Their Buttons
	Quick Summary of Default Buttons
	About the Pick Button
	About the Right Button
	About the Middle Button
	Troubleshooting

	Other Input Devices
	Digitizing Tablets
	3D Mice
	Touch Pads

	Customizing Shell Commands
	Tutorial: Editing Shell Commands
	Customizing Mouse, Double-click, and Tablet Buttons

	Customizing Command Aliases
	Tutorial: Customizing Aliases
	Tutorial: Creating New Aliases
	Tutorial: Editing & Deleting Aliases
	BricsCAD Aliases Sorted by Command Name

	Rules for Writing Aliases
	Tutorial: Hand-Coding Aliases

	Customizing Ribbon Panels
	Panel Design Tips
	Tutorial: Populating a new Panel
	Catalog of Panel Elements
	Append Ribbon Panel / Insert Ribbon Panel
	Delete
	Add Launcher
	Append Row / Insert Ribbon Row / Insert Row Panel
	Append Break / Insert Ribbon Break / Append Separator
	Append Split Button
	Append Toggle Button

	Customizing Keystroke Shortcuts, Aliases, and Shell Commands
	Quick Summary of Shortcut Keystrokes

	Tutorial: Defining Shortcut Keys
	Tutorial: Editing & Deleting Keyboard Shortcuts
	Tutorial: Assigning Multiple Commands

	The Structure of Ribbons
	Tutorial: How to Add Panels to Ribbon Tabs
	Moving Panels
	Copying Panels
	Removing Panels

	Tutorial: Making New Tabs
	Tutorial: How to Force New Tabs to Display
	Adding Panels to Ribbon Tabs
	Moving Tabs Along the Ribbon
	Copying Tabs
	Hiding Tabs in a Workspace

	Complete Catalog of Diesel Functions
	Math Functions
	Logic Functions
	Conversion Function
	String Functions
	System Functions
	Diesel Programming Tips
	Debugging Diesel
	ModeMacro: Displaying Text on the Status Bar

	Customizing Ribbon Tabs and Panels
	QUICK Summary of Ribbon Commands and Variables

	Formatting Diesel Output
	Formatting Numbers
	Fix
	Index
	Nth
	Rtos
	Formatting Angles

	Formatting Text
	Upper
	StrnLen

	Variables in Diesel

	Diesel Coding
	About Diesel
	How to Toggle Check marks
	Toggling Grayouts

	Reporting Values of System Variables
	Applying Variables Everywhere
	How to Add Units
	How to Solve Check Marks that Conflict with Icons
	How to Deal with Two Sysvars
	Reporting Through Diesel
	Formatting Units

	Simple Macros
	Quick Summary of Diesel Functions
	Transparent Commands in Macros
	Dashed Commands

	Options & User Input
	Options
	Pausing for User Input
	Combining Options and Pauses
	Other Control Keys

	Menu-Specific Metacharacters

	Customizing Buttons
	Modifying Button Parameters
	Tutorial: Editing the Title Name and the Help String
	Tutorial: Changing the Command Macro
	Tutorial: Replacing Button Images

	Writing Macros and Diesel Code
	Quick Summary of Metacharacters in Macros

	Adding Controls, Flyouts, and Separators
	About Controls (Droplists)
	Tutorial: Adding Controls (Droplists) to Toolbars
	Customizing Controls (Droplists)

	About Flyouts
	Tutorial: Adding Flyouts to Toolbars

	About Separators
	Tutorial: Adding Separators to Toolbars

	Removing Buttons, Renaming and Deleting Toolbars
	Tutorial: Removing Buttons and Toolbars
	Tutorial: Renaming Toolbars and Buttons
	Sizing Buttons

	Making New Toolbars, and Modifying Them
	Tutorial: How to Create A New Toolbar
	Tutorial: Alternative Method

	Customizing the Look of Toolbars
	Rearranging Toolbars
	Tutorial: Dragging and Moving Toolbars
	Quick Summary of Toolbar Parameters

	Tutorial: Turning Toolbars On and Off

	Tutorial: Sharing Menus
	Importing AutoCAD Menus
	Customizing Toolbars and Button Icons
	Quick Summary of Toolbar Commands & Variables

	Context Menus
	Tutorial: Customizing Context Menus

	Tutorial: Adding Tools to Menus
	Tutorial: Adding Menu Items
	Tutorial: Deleting Menu Items

	Using Partial Menus to Customize BricsCAD Correctly
	Setting Up a New Partial Menu
	Sharing Customizations
	Removing Partial CUI Files

	Customizing the Menu Bar and Context Menus
	Modifying the Menu Bar
	Quick Summary of Menu Commands & Variables
	Touring the Menu Tab
	Quick Summary of Menu Parameters

	Opening and Closing Nodes
	Gray Dots and Separator Lines

	Understanding Menu Title Conventions
	Keyboard Shortcut - &
	Dialog Box - ...
	Menu Titles

	Commands Use Macros
	Cancel - ^c
	Transparent - '
	Internationalize - _
	Enter - ;
	Pause - \

	Editing the Help String

	Touring the Customize Dialog Box
	ABOUT Cui Files
	Customize’s Menu Bar
	About Main and Partial Customization
	CUI Customization Files

	Search For Commands
	Tabs of the Customize Dialog Box
	Shortcut Menus
	Apply and OK Buttons
	Viewing Changes Made to Customize
	Additional Management Options

	Customizing Other UI Elements
	Working with the Customize Dialog Box
	Introduction to the Customize Dialog Box

	Maximizing the Drawing Area
	Using Multiple Monitors

	Customizing the Look From Control
	LookFrom Command
	Related System Variables

	Customizing Drawing Tabs
	Related System Variables

	Customizing the Ribbon
	Handling the Ribbon
	Related System Variables

	Customizing the Command Line
	Resizing and Hiding the Command Line
	Related System Variables

	Additional Command Line Variables
	Even More Command Line Variables

	Reusing User Preferences
	Launching the User Profile Manager
	Using the Profile Manager

	Adapting the User Interface To You

	Support File Paths
	Summary of Files Settings
	Files (and Paths)
	Project Paths
	Printer Support Paths and Files
	Templates Paths and Files
	Tool Palettes Path
	Dictionaries Section
	Log Files Paths and Files
	File Dialogs
	Places Bar (Windows only)

	Changing the Colors of the User Interface
	Background Color
	Changing Cursor Color and Size
	Display Settings

	Snap Marker Options
	Hyperlink Cursor Options
	Settings at the Command Line

	Dynamic Dimension Options

	Starting BricsCAD
	Command Line Options
	Catalog of Command-Line Switches
	No Switch - Load Drawings
	B Switch - Script Files
	L Switch - No Logo
	LD Switch - Application Load
	S Switch - Search Support Paths
	P Switch - User Profiles
	PL Switch - Batch Plotting
	T Switch - Template Files
	Regserver and Unregserver Switches

	Changing Variables at the Command Prompt
	Changing BricsCAD’s Environment

	Touring the Settings Dialog Box
	Settings Dialog Box: Toolbar
	Categorized/Alphabetic Sorting
	Show Differences
	Dialog Configuration
	Finding Variables
	Export Settings
	Exporting Variables

	Accessing Variables and Changing Values
	Variables Specific to Windows

	For Further Reference
	Reference and Tutorial Books
	BricsCAD API References
	DWG, DXF, and DWF References
	Adjusting BricsCAD’s Settings

	61 Tips for BricsCAD Users
	The Many Ways to Customizing
	Which Customization Do You Use?
	Versions of BricsCAD

	Introduction to How to Customize BricsCAD
	Customizing the BricsCAD Environment
	Customizing Linetypes
	At the Command Prompt
	Testing the New Linetype

	Creating Linetypes with Text Editors

	Concise LISP Reference
	Concise DCL Reference
	System Variables and Settings
	Command Summary
	Appendices
	Dabbling in VBA
	Designing Dialog Boxes with DCL
	Programming with LISP
	Writing Scripts
	Programming BricsCAD
	Coding with Field Text
	Decoding Shapes and Fonts
	Patterning Hatches
	Creating Simple and Complex Linetypes
	Designing Tool & Structure Panels
	Other Customizations in BricsCAD
	Customizing Multiple UIs with Workspaces
	Customizing Rollover Properties
	Customizing the Quad
	Customizing Mouse, Double-click, and Tablet Buttons
	Customizing Keystroke Shortcuts, Aliases, and Shell Commands
	Customizing Ribbon Tabs and Panels
	Writing Macros and Diesel Code
	Customizing Toolbars and Button Icons
	Customizing the Menu Bar and Context Menus
	Introduction to the Customize Dialog Box
	Working with the Customize Dialog Box
	Adapting the User Interface To You
	Changing BricsCAD’s Environment
	Adjusting BricsCAD’s Settings
	Introduction to How to Customize BricsCAD
	Customizing the BricsCAD Environment
	Full Table of Contents

